
WHITEPAPER

Connect Kafka
to client devices
at the edge
Ably's serverless WebSocket platform offers a simple and
reliable way to stream Kafka events in realtime to millions
of web, mobile, and IoT clients.

2

Contents
Connect Kafka to client devices at the edge

Realtime data and event-driven architectures are on the rise		 03

Where does Kafka fit in? 				 04

Connecting Kafka to users at the network edge 				� 06

What are the traits of a dependable internet-facing middleware? 	 07

The challenges of building your own solution to connect Kafka to
client devices 	� 08

Introducing Ably 				� 09

Take things to the next level with Kafka and Ably 			 10

The benefits of using Ably alongside Kafka 	 11

Your Kafka data is secure 	� 11

Reduced infrastructure costs and engineering complexity 	� 11

Faster time to market 	� 11

Kafka + Ably system characteristics 	 12

Low latency 	� 12

Scalability 	� 12

Reliability and high availability 	� 12

Superior messaging QoS guarantees 	� 12

Interoperability 	� 13

Kafka + Ably use cases 	 13

Banking 	� 14

Chat 	� 15

eCommerce 	� 17

Ticket booking 	� 19

Live score updates and betting 	� 21

Live dashboards 	� 22

Get started with Kafka and Ably today 				� 23

03

Realtime data and event-
driven architectures
are on the rise
Our everyday digital experiences are in the midst of
a revolution. Users increasingly expect their online
experiences to be interactive, responsive, immersive, and
realtime by default.

The need to satisfy user expectations is driving the adoption of event-driven
architectures (EDA) in organizations of all shapes and sizes. Event-driven
architecture is not a new concept. It’s been around since the 1970s, has been
extensively battle-tested since, and has been patiently waiting for its moment.
What’s new is the way in which EDA is taking center stage to solve modern business
problems and help deliver realtime user experiences.

According to a survey2 (on how organizations use event-driven
architectures), 85% of the 840 respondents recognize the critical business
value of adopting EDA. The main benefits of implementing EDA are:

•	 Improving application responsiveness (46%)

•	 Improving customer experiences (44%)

•	 Responding to events and changes in realtime (43%)

Estimates suggest that 30% of all global data consumed by 2025 will
result from information exchange in realtime.1

1 Source: https://go.ably.com/513
2 Source: https://go.ably.com/js3

https://go.ably.com/513
https://go.ably.com/js3

04

Where does Kafka fit in?
Created about a decade ago, Apache Kafka is a widely adopted event streaming
solution. Kafka uses the pub/sub pattern and acts as a message broker to enable
realtime communication between various backend components.

Here’s a summary of Kafka’s key concepts:

•	 Events are Kafka’s smallest building blocks. An event records that something
relevant has happened; for example, a user has made a payment.

•	 Topics are ordered sequences of events stored durably, for as long as needed.
Each topic consists of multiple partitions. The benefit is that partitioning allows
you to parallelize a topic by splitting its data across multiple Kafka brokers.

•	 Producers and consumers. Producers are services that publish (write) to Kafka
topics, while consumers subscribe to Kafka topics to consume (read) events.

Consumer Group

Consumer

Producer

Consumer Group

Consumer

Consumer Group

Consumer

Consumer

Kafka deployment

Topic A

Topic B

Event 1

Producer

Producer

Event 1

Event 1

Event 1

Event 2

Event 1

Event 2

To enhance and complement its core event streaming capabilities, Kafka
leverages a rich ecosystem, with additional components and APIs, like Kafka
Streams, ksqlDB, and Kafka Connect.

Kafka Streams enables you to build realtime backend apps and microservices,
where the input and output data are stored in Kafka clusters. Streams is used to
process (group, aggregate, filter, and enrich) streams of data in realtime.

05

ksqlDB is a database designed specifically for stream processing apps. You can
use ksqlDB to build event streaming applications from Kafka topics.

Kafka Connect is a tool designed for reliably moving large volumes of data
between Kafka and other systems (such as Elasticsearch, Hadoop, or MongoDB,
to name just a few). So-called “connectors” are used to transfer data in and out of
Kafka. There are two types of connectors:

•	 Sink connector. Used for streaming data from Kafka topics into another
system.

•	 Source connector. Used for ingesting data from another system into Kafka.

Kafka displays robust characteristics, that make it a strong choice for building
reliable event-driven systems:

•	 Low latency

•	 Scalability & high throughput

•	 Guaranteed ordering and delivery

•	 Durability

•	 High availability and fault tolerance

Thousands of companies use Kafka for high-performance data pipelines,
streaming analytics, and mission-critical applications. Here’s a non-exhaustive list
of use cases where event-driven architectures powered by Kafka are a great fit:

•	 Banking and fintech (e.g., realtime payment processing and fraud detection).

•	 Asset tracking and logistics (monitoring cars, assets, and shipments in
realtime)

•	 Collecting and immediately reacting to user actions (for example, pushing
a personalized recommendation to a customer browsing an eCommerce
website after they’ve added something to their cart).

•	 Continuously capturing and analyzing data from various sources, such as IoT
devices.

•	 Live dashboards and realtime analytics.

•	 Processing and distributing sports and betting data in realtime.

06

Connecting Kafka to users
at the network edge
For many use cases, Kafka is crucial to having an event-
driven, time-ordered, highly available, and fault-tolerant
dataspace.

A key thing to bear in mind is that Kafka is designed and optimized for internal
event streaming, enabling streams of data to flow in realtime between
microservices, databases, and other types of components within your backend
ecosystem.

Despite its strengths, it’s important to highlight that Kafka is not a proxy
for millions of client devices.

So, the question is, how do you connect your Kafka pipeline to end-users
at the network edge in realtime?

The solution is to use Kafka in combination with an intelligent internet-
facing middleware (messaging layer) built specifically for data
distribution to user devices.

Ideally, this middleware should provide the same level of guarantees and
display similar characteristics to Kafka; you don’t want to degrade the overall
dependability of your system by pairing Kafka with a less reliable internet-facing
middleware.

07

What are the traits of a dependable internet-facing
middleware?
A middleware that you can trust to reliably deliver Kafka events to end-users
should exhibit the following properties:

•	 Low latency
Essential for an optimum user experience, and critical for certain use cases,
such as streaming live score updates. Just as Kafka streams events in your
backend in milliseconds, your internet-facing middleware should allow you to
send data to your users with consistently low latencies.

•	 Message ordering and guaranteed delivery
For many use cases, it’s unacceptable for messages to be sent out of order.
Think, for example, of chat apps, and imagine how frustrating and confusing
it can be if the replies are not delivered in the correct order. Additionally,
guaranteed delivery (preferably exactly once) is critical for many use cases -
for example, sending fraud alerts.

•	 Fault tolerance
The assumption has to be that component failures will happen sooner or
later. What’s important is that when failures do occur, your system has enough
redundancy to continue operating, with functionality and user experience
preserved as effectively as possible.

•	 Scalability
The public internet is a volatile and unpredictable source of traffic. You don't
know how many users might connect to your system simultaneously - this can
range between hundreds and millions. If your internet-facing middleware
cannot sustain incoming connections and the fluctuating volume of traffic,
system-breaking complications can arise, negatively affecting availability,
uptime, and user experience. Your internet-facing middleware should be
dynamically elastic so that it can quickly react and scale out to handle
potential spikes in usage.

08

The challenges of building your own solution to
connect Kafka to client devices
Building your own middleware to extend Kafka to client devices at the edge is
often time-consuming, expensive, and complex. Here are the key challenges you
have to face with a DIY solution:

•	 Large financial costs to build the infrastructure, and additional costs to
maintain and improve it.

•	 Significant engineering effort to build and maintain, shifting focus away from
product development, and increasing your time to market.

•	 Developing a system you can trust to deliver at scale is a formidable
engineering challenge. Failing to do it right (e.g., sub-optimal latency or
outages) will lead to user dissatisfaction.

Take, for example, the WebSocket technology. Due to its low latency, event-driven
nature, maturity, and widespread adoption, WebSocket is a prime choice for
extending your internal Kafka pipeline to client devices. However, engineering a
reliable, scalable WebSocket middleware that’s fit for the job is far from trivial.

It’s often more convenient and cost-effective to offload the complexity of
connecting Kafka to end-users to a managed, specialized PaaS provider.

A recent survey3 highlights just how complex it is to build WebSocket
infrastructure for last-mile delivery in-house:

•	 65% of DIY solutions had an outage or significant downtime in the
last 12-18 months.

•	 10.2 person-months is the average time to build basic infrastructure,
with limited scalability, in-house.

•	 Half of all self-built realtime data platforms require $100K-$200K a
year in upkeep.

3 Source: https://go.ably.com/2fg

https://ably.com/resources/reports/state-of-serverless-websocket-infrastructure
https://go.ably.com/2fg

09

Introducing Ably
Ably is a serverless WebSocket platform designed for
realtime pub/sub messaging at the edge. Ably is often
used as middleware for sending mission-critical Kafka
data to millions of web, mobile, and IoT devices, via a
fault-tolerant, autoscaling global edge network.

Connecting your Kafka deployment to Ably is straightforward. This is made
possible with the help of the Ably Kafka Connector, a sink connector built on top of
Kafka Connect.

The Ably Kafka Connector provides a ready-made integration that enables you
to publish Kafka events into Ably channels with ease and speed. Events can then
be distributed in realtime to millions of web, mobile, and IoT clients using Ably’s
WebSocket-based pub/sub messaging.

The connector can be self-hosted, or hosted with a
third-party provider such as the Confluent Platform.
The Ably Kafka Connector is a Verified Gold
Connector on Confluent.

Going beyond the Connector (useful for egress
scenarios), Ably makes it easy to stream data
generated by end-users back into Kafka (ingress use
cases). This is achieved using the Ably Kafka rule.

https://ably.com/
https://ably.com/docs/general/kafka-connector
https://ably.com/pub-sub-messaging
https://ably.com/docs/general/firehose/kafka-rule
https://www.confluent.io/hub/ably/kafka-connect-ably

10

Take things to the next
level with Kafka and Ably
Ably and Kafka are complementary solutions; they are
both event-driven, and they share similar guarantees,
messaging semantics, and properties. With Ably as a
broker in the middle, you can seamlessly and scalably
extend your Kafka event streaming pipeline to web,
mobile, and IoT clients at the edge.

Designed for internal event streaming.

Enables event-driven communication
between various backend components.

Designed for last-mile delivery.

Powers live and collaborative experiences
for end-users at the edge, primarily over
WebSockets.

Works best with a low number of topics, and
a defined, predictable number of producers
and consumers.

Designed to work with an unknown and
rapidly changing number of channels (Ably's
equivalent of topics) and subscribers.

Ably can quickly scale horizontally to handle
millions of consumers.

Distributed pub/sub system:

•	 High throughput

•	 Sub-second latencies

•	 Fault tolerance

•	 Message ordering and delivery
guarantees

Distributed pub/sub system:

•	 High throughput & concurrency

•	 < 65ms global median roundtrip
latency

•	 Regional & global fault tolerance

•	 Guaranteed ordering and delivery
even in unreliable network conditions

Explore Ably’s features and capabilities

https://ably.com/platform

11

The benefits of using Ably alongside Kafka

Your Kafka data is secure
By using Ably as your public internet-facing middleware, you decouple your
backend Kafka deployment from the public internet, and protect the integrity of
your event-driven pipeline at all times.

Client devices never connect directly to Kafka. Instead, they are only allowed to
subscribe to the Ably channels for which they have permissions. In addition, Ably
provides robust security mechanisms suitable for event streaming to public internet
consumers:

•	 Message-level encryption.

•	 DoS protection and rate limiting.

•	 Flexible authentication (API keys and tokens) with fine-grained access control.

•	 SOC 2 Type 2, HIPAA, and EU GDPR compliance.

Reduced infrastructure costs and engineering complexity
Building a proprietary internet-facing middleware that can extend Kafka to user
devices is time-consuming, risky, and involves significant DevOps, engineering,
and financial resources.

As a fully-managed, serverless platform, Ably removes the burden of maintaining
complex realtime infrastructure for last-mile delivery. You don't have to manually
provision capacity or worry about scaling up and down to meet demand, and with
our flexible pricing model, you will only pay for what you use.

Faster time to market
Since there’s no realtime infrastructure for last-mile delivery to maintain, you are
free to focus on building, improving, and releasing new products and features.
Complementing Kafka’s event streaming capabilities, Ably provides out-of-
the-box features like presence, automatic reconnections, or push notifications,
empowering you to quickly develop and refine live and collaborative experiences
for your users.

Want to better understand how organizations of all shapes and sizes benefit from
using Ably to build live and collaborative experiences?

Explore Ably's customer stories

COMPANIES BUILDING ON ABLY'S SERVERLESS WEBSOCKET PLATFORM

https://ably.com/security-and-compliance
https://ably.com/platform
https://ably.com/platform
https://ably.com/case-studies

12

Kafka + Ably system characteristics
An event-driven system built with Kafka and Ably displays the following
characteristics:

Low latency
Kafka can stream and process events in milliseconds. Complementary, Ably
streams events to client devices with sub-second latencies (<65 ms global median
roundtrip latency), irrespective of where they are in the world. This is made possible
by Ably’s globally-distributed infrastructure.

Scalability
Kafka is known as a scalable solution, although scaling it yourself is not necessarily
the easiest path. Things are made easier if you use a managed provider such
as Confluent that provides elasticity and self-serve provisioning, allowing you to
quickly and effortlessly scale your Kafka ecosystem as needed.

Similarly, Ably provides a fully managed layer between the backend and the
frontend that can autoscale horizontally to handle up to millions of concurrently
connected end-user devices.

Reliability and high availability
Kafka is designed with failure in mind (which is inevitable in distributed systems)
and fail-over capabilities. Kafka achieves high availability by replicating the log
for each topic's partitions across a configurable number of brokers. Note that
replicas can live in different data centers, across different regions.

Ably provides fault tolerance at regional and global levels, so it can survive
multiple failures without outages. Ably guarantees 99.999999% message
survivability for instance and datacenter failures, and offers a 99.999% uptime SLA.

Together, Kafka and Ably create a distributed, robust, and trustworthy event-
driven pipeline that is always dependably available to end-users.

Superior messaging QoS guarantees
Kafka can be configured to support ordering and exactly-once semantics, while
Ably guarantees message ordering and exactly-once delivery, even in unreliable
network conditions. Together, Kafka and Ably provide data integrity end-to-end:
users always receive events in the correct order, without messages being lost or
delivered multiple times.

https://ably.com/network
https://faqs.ably.com/are-you-able-to-scale-ably-indefinitely-to-meet-demand
https://ably.com/four-pillars-of-dependability#reliability
https://ably.com/uptime#always
https://ably.com/four-pillars-of-dependability#integrity
https://ably.com/four-pillars-of-dependability#integrity

13

Interoperability
There are numerous Kafka sink and source connectors that allow you to
efficiently move large volumes of data between Kafka and other systems, such as
Elasticsearch, Hadoop, or MongoDB, to name just a few.

Ably offers:

•	 25+ client SDKs targeting every major programming language.

•	 Multi-protocol capabilities (WebSockets, MQTT, Server-Sent Events, and more).

•	 Managed integrations with numerous systems, such as serverless function
providers.

Combined, Kafka and Ably provide a highly interoperable solution, making it
easy to add additional components to your architecture, and connect different
backend systems with various client devices in realtime.

Kafka + Ably use cases
We will now look at some examples to better understand how Kafka and Ably can
be combined for various use cases - banking apps, eCommerce, live dashboards,
and more.

Note that in addition to the use cases covered in the following pages, you can
use Kafka + Ably for practically any scenario where time-sensitive data needs to
be processed and must flow between the data center and client devices at the
network edge in (milli)seconds.

https://ably.com/download
https://ably.com/protocols
https://ably.com/integrations

14

Banking
A banking ecosystem powered by Kafka and Ably might look something like this:

Alerting &
Noti�cations

Services

Transactions
Services

Ably Kafka
Connector

(sink connector)

Account
Management

Services

Fraud Detection
Services

£5.00

USD
EUR
GBP
JPY

New
payment

£7.32

Ably channel

Ably channel

Ably channel

Ably serverless
WebSocket platform

Client device

Client device

Client device

Outbound
Kafka topic

Inbound
Kafka topic

(edge delivery)

Kafka
 rule

There are only two Kafka topics - one for inbound data, and another one for
outbound data. Events are consumed from the inbound Kafka topic by various
backend services (e.g., fraud detection) for processing. Whenever new data is
available, these services write it to the outbound Kafka topic.

Ably acts as an internet-facing message broker, decoupling components, and
intermediating the data flow between your banking app users and your backend
Kafka pipeline. Events from the outbound Kafka topic (e.g., fraud alert events) can
be easily transferred to Ably via the Ably Kafka Connector. Ably then distributes
the events to relevant users over WebSocket-based pub/sub channels (you can
also use push notifications for iOS and Android users).

With the help of the Kafka rule, actions performed by users (such as a payment
confirmation) can be streamed from Ably into the inbound Kafka topic (and from
there, to various services for processing).

Learn more about Kafka + Ably for banking

You can use Kafka and Ably for the following banking use cases:

•	 Sending in-app notifications.

•	 Realtime payments.

•	 In-app chat.

•	 Realtime analytics dashboards.

•	 Realtime and account balance updates.

https://ably.com/docs/general/kafka-connector
https://ably.com/docs/core-features/channels
https://ably.com/docs/general/firehose/kafka-rule
https://ably.com/blog/dependable-realtime-banking-with-kafka-and-ably

15

Chat
A high-level chat architecture with Kafka and Ably could look like this:

Ably powers 1:1 and group chat for end-users - this is done over Ably pub/sub
channels. Ably uses WebSockets under the hood, which means that a user can
send and receive chat messages over the same connection, rather than having to
open multiple connections.

Ably guarantees ordering, delivery, and exactly-once semantics, even if brief
disconnections are involved (for example, a user switches from a mobile network to
Wi-Fi); that’s because our client SDKs automatically re-establish connections and
ensure stream continuity.

Chat data sent to Ably can be streamed into Kafka for processing, by making use
of the Kafka rule. Ably can collect and publish different types of data into Kafka,
from chat messages to presence events (such as someone joining a chat room).
Kafka Streams workers are used to process data from the inbound Kafka topics.

https://ably.com/docs/core-features/channels
https://ably.com/docs/core-features/channels
https://ably.com/four-pillars-of-dependability#integrity
https://ably.com/blog/achieving-exactly-once-message-processing-with-ably
https://faqs.ably.com/connection-state-recovery
https://ably.com/docs/general/firehose/kafka-rule
https://ably.com/documentation/core-features/presence

16

Once processed, chat messages and presence events are sent to Ably pub/
sub channels (via the Ably Kafka Connector) for distribution to end-user devices.
There is an Aerospike cache used to store user account data (such as user profiles,
passwords, etc.). User search and message history are written by Kafka Streams
workers to a storage topic, and then sent to Elasticsearch. End-users perform
account-specific operations (such as changing their passwords), and retrieve
search and message history through a REST API.

Going beyond live chat, you can use Ably to send push notifications to offline chat
users.

If you’re planning to add video support to your chat app, you’ll most likely have to
use something like WebRTC, which allows for peer-to-peer communication. You’d
still need servers with WebRTC, so peers can exchange metadata to coordinate
communication through a process called signaling. The WebRTC API itself
doesn’t offer a signaling mechanism, but you can use Ably to quickly implement
dependable signaling mechanisms for WebRTC apps.

Learn more about Kafka + Ably for chat

You can use Kafka and Ably for the following chat use cases:

•	 Chatbots, 1:1, and group chat, with message history, presence, emoji
reactions, typing indicators, and more.

•	 Sending push notifications to offline chat users.

•	 Collecting and streaming chat (meta)data into the Kafka pipeline.

https://ably.com/docs/general/kafka-connector
https://ably.com/push-notifications
https://ably.com/topic/apache-kafka-chat-application
https://ably.com/examples/emoji-reactions
https://ably.com/examples/emoji-reactions
https://ably.com/examples/typing-indicator

17

eCommerce
Here’s how the architecture of an eCommerce system built with Kafka and Ably
might look like:

Kafka rule

Long term

storage

Ably

Kafka

Ably

Analytics topic

Stock updates

& ofers topic

Inbound topic

Stream processing

engine

Ably Kafka Uonnector

Lije analytics

dashboards

Out of stock

warning

Online shopper

Online shopper

Whenever a user buys something or adds an item to their cart, an event (message)
is sent to Ably via WebSocket-based pub/sub channels. This stream of events (from
all users) is then sent from Ably to an inbound Kafka topic; this is achieved with the
help of the Kafka rule.

A stream processing engine then consumes data from the inbound Kafka topic;
in our example, we’ve used Apache Flink, a scalable, high-performance solution
capable of processing streams of events with low latencies, to extract analytics
and insights from raw data. We’ve included Flink to make things more relatable,
and because it integrates well with Kafka. However, its use is indicative, not
prescriptive. There are other solutions you could use instead of Flink (depending
on the specifics of your use case), such as Apache Pinot, ksqlDB, or even a
microservice you build yourself.

https://ably.com/docs/core-features/channels
https://ably.com/docs/general/firehose/kafka-rule

18

Once Flink processes the stream of events, the output is written to two different
Kafka topics: one is used for stock updates & personalized offers, and the other for
internal analytics. Data from both these topics is synced to Ably, with the help of
the Ably Kafka Connector. Ably then routes data to end-user devices over pub/sub
channels.

While there is a single topic to handle stock updates and offers for all users, you
can flexibly shard and route this data to client devices once it’s moved from Kafka
into Ably. For example, all users of the eCommerce platform could be subscribed
to a “stock updates” Ably channel, and receive realtime updates about the
availability of any given product at any point in time. More than that, you can
have an Ably channel for each client device, so you can push personalized offers,
depending on each user’s activity and shopping habits.

With Ably’s help, data from the analytics topic in Kafka can help the eCommerce
provider analyze, understand, and improve business efficiency. For example, you
can have live BI dashboards to keep track of things like the number of apples (or
any other item) sold, or the number of sales between 1 pm and 2 pm. Or you can
receive warnings when you are running low on an item, so you can restock.

Learn more about Kafka + Ably for eCommerce

You can use Kafka and Ably for the following eCommerce use cases:

•	 Collecting and sending user activity (e.g., someone adding an item
to their cart) into Kafka for processing.

•	 Pushing stock updates and personalized offers to users.

•	 Live BI dashboards for your internal teams to keep track of relevant
metrics (e.g., remaining stock).

•	 Out-of-stock warnings and push notifications.

•	 In-app chat.

https://ably.com/docs/general/kafka-connector
https://ably.com/topic/kafka-analytics

19

Ticket booking
This diagram presents the high-level architecture of a realtime ticket booking
solution built with Kafka and Ably:

Conference
organizer

Create
conference

FastAPI

Ably Webhook

Booking
events

Customers Customers Customers

Ably Kafka
Connector

Materialized
view topic

ksqlDB
Bookings topic

Conferences topic

2
13

Conference
& ticket availability

Kafka

Now, let’s dive into details and see how the system works end-to-end. Whenever a
new conference is planned, the organizer sends a “Create conference” API request
to the frontend API component (FastAPI).

Next, the frontend API publishes the conference-related data as a record in the
“Conferences” topic in Kafka. Records stored in the “Conferences” topic are then
processed by ksqlDB, the stream processing component in our architecture. The
output is written to the “Materialized view” Kafka topic.

Kafka data from the “Materialized view” topic is sent to the “Conference & ticket
availability” Ably channel, via the Ably Kafka Connector. Ably then broadcasts
the data in realtime to all client devices subscribed to the “Conference & ticket
availability” channel.

https://ably.com/documentation/core-features/channels
https://ably.com/docs/general/kafka-connector

20

Whenever a user books a ticket for a conference, Ably sends a webhook
to the FastAPI component. FastAPI publishes the booking-related data to
Kafka. However, this time, data is written to the “Bookings” topic instead of
the “Conferences” topic. Each time a new record is written to the “Bookings”
or “Conferences” topics, ksqlDB merges the changes into a unified view, the
“Materialized view” topic - which reflects the latest state. Note that the latest state
is always delivered by Ably to end-users with sub-second latencies.

Learn how to build a ticket booking system with Kafka and Ably

This architecture ensures that:

•	 Users have an accurate, always up-to-date view of all upcoming
conferences, together with the number of available tickets for each
conference.

•	 Data travels in realtime, with ordering and exactly-once delivery
ensured by both Ably and Kafka.

•	 The system can scale to handle a high and rapidly changing
number of concurrent users, due to Kafka and Ably both being highly
scalable solutions.

https://ably.com/docs/general/webhooks
https://ably.com/blog/realtime-ticket-booking-solution-kafka-fastapi-ably
https://ably.com/blog/achieving-exactly-once-message-processing-with-ably

21

Live score updates and betting

To demonstrate how Confluent Cloud and Ably work together when engineering
realtime betting functionality, we’ve built a demo app with the following
architecture:

Whenever new odds are available, they are sent from Confluent Cloud to Ably
via the Ably Kafka Connector. Ably then distributes the odds in realtime to any
number of Android app users over pub/sub channels.

In the Android app, users can see odds changing in realtime, and they can place
their bets. Since Ably uses event-driven, bidirectional WebSockets as the primary
transport protocol, a user not only receives odds, but they are also able to quickly
place their bets over the same connection.

Ably streams the firehose of bets made into Confluent Cloud (through the Kafka
rule). ksqlDB is then used to create a materialized view of the current state of the
order book, and to push updated odds into the Odds topic.

From here, the process we’ve covered so far repeats - there’s a continuous loop
of data being processed and traveling in realtime between the backend and the
Android app, with Ably sitting as an edge messaging broker between Kafka and
end-users.

We’ve also built a Python microservice that queries ksqlDB, the purpose being to
send personalized notifications to users, making them aware of various events: a
win, a loss, or a new race starting soon. Note that these updates are delivered to
Android users with the help of Ably’s push notifications functionality.

https://ably.com/docs/general/kafka-connector
https://ably.com/docs/general/kafka-connector
https://ably.com/docs/core-features/channels
https://ably.com/docs/general/firehose/kafka-rule
https://ably.com/docs/general/firehose/kafka-rule
https://ably.com/docs/general/push

22

Although the example we’ve provided focuses on betting, you can easily
extend it to include additional functionality:

•	 Live score updates and activity feeds.

•	 In-app chat.

•	 Other related functionality, such as payment processing and fraud
detection.

Learn how to build a betting app with Confluent and Ably

Live dashboards

Experity provides technology solutions for the healthcare industry. One of its core
products is a BI dashboard that enables urgent care providers to drive efficiency
and enhance patient care in realtime. The data behind Experity’s dashboard is
drawn from multiple sources and processed in Kafka.

Experity decided to use Ably as their Internet-facing middleware because our
platform works seamlessly with Kafka to stream mission-critical and time-sensitive
realtime data to end-user devices. Ably extends and enhances Kafka’s guarantees
around speed, reliability, integrity, and performance. Furthermore, Ably frees
Experity from managing complex realtime infrastructure designed for last-mile
delivery. This saves Experity hundreds of hours of development time and enables
the organization to channel its resources and focus on building its core offerings.

Learn how Experity benefits from using Kafka + Ably

Ably is awesome. It was a life-saver for me. Not only was it the
only HIPAA-compliant realtime solution capable of integrating
with Kafka streams and giving us the performance guarantees
we need, but the set-up was just incredibly straightforward.
It instantly transformed the value of the dashboard for our
customers.

Andrew Hanisch
System Architect, Experity

https://ably.com/examples/activity-feed
https://ably.com/blog/a-real-time-betting-app-with-kafka-and-ably
https://ably.com/case-studies/experity

Get started with Kafka
and Ably today

Get in touch

Visit
ably.com

Call

+44 20 3318 4689 (UK)
+1 877 434 5287 (USA)

Email
hello@ably.com

Ably is one of the key technologies that underpins our business.
Its realtime platform and infrastructure layer seamlessly
supports HubSpot's entire realtime needs, helping us to
meet our technical, business, and product development
requirements. With Ably, we have innovated and taken new
products to market much faster while significantly reducing our
operational engineering overhead.

Max Freiert
Product Group Lead, Hubspot

Ready to maximize the
value of your Kafka
pipeline by extending it
to millions of client devices
in realtime?

Sign up for a free Ably account

Then read our documentation to
seamlessly integrate your Kafka
deployment with Ably:

•	 The Ably Kafka Connector

•	 The Kafka rule

If you have questions or want to
find out more about the benefits of
pairing Kafka and Ably, reach out.

https://ably.com/
mailto:hello%40ably.com?subject=
https://ably.com/sign-up
https://ably.com/docs/general/kafka-connector
https://ably.com/docs/general/firehose/kafka-rule
https://ably.com/contact

