
The WebSocket
Handbook
Learn about the technology underpinning
the realtime web and build your first web
app powered by WebSockets

v2.0 • February 2022

The WebSocket Handbook
By Alex Diaconu

Special Thanks
In no particular order: Jo Franchetti (for contributing Chapter 4 and building the demo
app), Ramiro Nuñez Dosio (for encouraging me to write the book in the first place,
giving valuable advice, and removing blockers), Jonathan Mercier-Ganady (for the
technical review), Jo Stichbury (for the editorial review), Leonie Wharton, Chris Hipson,
Jamie Watson (for all the design work involved), Ben Gamble (for helping me define and
write Chapter 5).

About the Author
Alex Diaconu is a WebSocket enthusiast who has spent most of
his professional career working alongside engineering teams,
technical product managers, and system architects, while writing
about web technologies. Alex is currently a Technical Content
Writer at Ably, where he is exploring the world of realtime tech, and
writing about the many challenges of event-driven architectures
and distributed systems. In his free time, Alex likes going on hiking
trips, watching his favourite football team, playing basketball, and
reading sci-fi & history.

https://go.ably.com/2h0

Contents
The WebSocket Handbook

Preface 06

Who this book is for 06

What this book covers 07

Chapter 1: The Road to WebSockets 08

The World Wide Web is born 08

JavaScript joins the fold 10

Hatching the realtime web 11

AJAX 11

Comet 13

Long polling 13

HTTP streaming 13

Limitations of HTTP 15

Enter WebSockets 17

Comparing WebSockets and HTTP 18

Use cases and benefits 18

Adoption 19

Chapter 2: The WebSocket Protocol 20

Protocol overview 20

URI schemes and syntax 21

Opening handshake 22

Client request 22

Server response 23

Opening handshake headers 24

Sec-WebSocket-Key and Sec-WebSocket-Accept 26

Message frames 27

FIN bit and fragmentation 28

RSV 1-3 29

Opcodes 29

Masking 30

Payload length 30

Payload data 31

Closing handshake 31

Subprotocols 34

Extensions 35

Security 35

Chapter 3: The WebSocket API 37

Overview 37

The WebSocket server 38

The WebSocket constructor 38

Events 39

Open 39

Message 40

Error 40

Close 41

Methods 41

send() 41

close() 42

Properties 43

binaryType 43

bufferedAmount 43

extensions 44

“onevent” properties 44

protocol 45

readyState 45

url 45

Chapter 4: Building a Web App with WebSockets 46

WebSocket clients and servers 46

ws — a Node.js WebSocket library 47

Building an interactive cursor position-sharing demo with ws 47

Setting up the WebSocket server 47

WebSockets on the client-side 49

Running the demo 52

SockJS — a JavaScript library to provide WebSocket-like communication 55

Updating the interactive cursor position sharing demo to use SockJS 55

Running the demo with SockJS 57

Scaling the web app 58

What makes WebSockets hard to scale? 58

Chapter 5: WebSockets at Scale 59

The scalability of your server layer 59

Load balancing 61

Load balancing algorithms 62

Architecting your system for scale 64

Fallback transports 66

Managing WebSocket connections and messages 68

New connections 68

Monitoring WebSockets 69

Load shedding 69

Restoring connections 70

Automatic reconnections 70

Reconnections with continuity 72

Heartbeats 72

Backpressure 73

A quick note on fault tolerance 74

WebSockets at scale checklist 75

Resources 77

References (ordered alphabetically) 77

Videos 78

Further reading 78

Open-source WebSocket libraries 78

Final thoughts 79

About Ably 80

06 The WebSocket Handbook Preface

Preface
Our everyday digital experiences are in the midst of a
realtime revolution. Whether we’re talking about virtual
events, EdTech, news and financial information, IoT
devices, asset tracking and logistics, live score updates, or
gaming, consumers increasingly expect realtime digital
experiences as standard. And what better to power these
realtime interactions than WebSockets?

Until the emergence of WebSockets, the “realtime” web was difficult to achieve and
slower than we’re used to nowadays; it was delivered by hacking existing HTTP-based
technologies that were not designed and optimized for realtime applications.

WebSockets mark a turning point for web development. Designed to be event-driven
& full-duplex, and optimized for minimum overhead and low latency, WebSockets have
become a preferred choice for many organizations and developers seeking to build
interactive, realtime digital experiences that provide delightful user experiences.

Who this book is for
This book is intended for developers (and any other types of technical audiences) who
want to:

• Explore the core building blocks of the WebSocket technology, its characteristics, and
its advantages.

• Build realtime web apps with WebSockets.

• Discover the benefits of event-driven architectures with WebSockets.

• Learn about the engineering challenges you will face when building scalable systems
with WebSockets.

Knowledge of/familiarity with HTML, JavaScript (and Node.js), HTTP, web APIs, and web
development is required to get the most out of this book.

07 The WebSocket Handbook Preface

What this book covers
Chapter 1: The Road to WebSockets looks at how web technologies evolved since the
inception of the World Wide Web, culminating with the emergence of WebSockets, a vastly
superior improvement on HTTP for building realtime web apps.

Chapter 2: The WebSocket Protocol covers key considerations related to the WebSocket
protocol. You’ll find out how to establish a WebSocket connection and exchange
messages, what kind of data can be sent over WebSockets, what types of extensions and
subprotocols you can use to augment WebSockets.

Chapter 3: The WebSocket API provides details about the constituent components of the
WebSocket API — its events, methods, and properties, alongside usage examples for
each of them.

Chapter 4: Building a Web App with WebSockets provides detailed, step-by-step
instructions on building a realtime web app with WebSockets and Node.js: an interactive
cursor position-sharing demo.

Chapter 5: WebSockets at Scale is an overview of the numerous engineering decisions
and technical trade-offs involved in building a system at scale. Specifically, a system that
is capable of handling thousands or even millions of concurrent end-user devices as they
connect, consume, and send messages over WebSockets.

Resources — a collection of articles, videos, and WebSocket solutions you might want to
explore.

The WebSocket technology is a vast and complex topic; this second version of the ebook
does not intend to cover everything there is to know about it. In future iterations, we plan
to:

• Add more details to the existing chapters.

• Provide more examples and walkthroughs for building apps with WebSockets.

• Cover additional aspects that are currently out of scope, such as WebSocket security,
and alternatives to WebSockets.

08 The WebSocket Handbook Chapter 1: The Road to WebSockets

CHAPTER 1

The Road to WebSockets
During the 1990s, the web rapidly grew into the dominant
way to exchange information. Increasing numbers of
users became accustomed to the experience of browsing
the web, while browser providers constantly released new
features and enhancements.

The first realtime web apps started to appear in the 2000s, attempting to deliver
responsive, dynamic, and interactive end-user experiences. However, at that time, the
realtime web was difficult to achieve and slower than we’re used to nowadays; it was
delivered by hacking existing HTTP-based technologies that were not designed and
optimized for realtime applications. It quickly became obvious that a better alternative
was needed.

In this first chapter, we’ll look at how web technologies evolved, culminating with the
emergence of WebSockets, a vastly superior improvement on HTTP for building realtime
web apps.

The World Wide Web is born
In 1989, while working at the European Organization for Nuclear Research (CERN) as a
software engineer, Tim Berners-Lee became frustrated with how difficult it was to access
information stored on different computers (and, on top of that, running different types of
software). This prompted Berners-Lee to develop a project called “WorldWideWeb”.

The project proposed a “web” of hypertext documents, which could be viewed by
browsers over the internet using a client-server architecture. The web had the potential to
connect the world in a way that was not previously possible, and made it much easier for
people everywhere to get information, share, and communicate. Initially used at CERN,
the web was soon made available to the world, with the first websites for everyday use
starting to appear in 1993-1994.

09 The WebSocket Handbook Chapter 1: The Road to WebSockets

Berners-Lee managed to create the web by combining two existing technologies:
hypertext and the internet. In the process, he developed three core building blocks:

• HTML. The markup (formatting) language of the web.

• URI. An “address” (similar to a postal address) that is unique and used to identify
each resource on the web.

• HTTP. Protocol used for requesting and receiving resources over the web.

This initial version of HTTP1 (commonly known as HTTP/0.9) that Berners-Lee developed
was incredibly basic. Requests consisted of a single line and started with the only
supported method, GET, followed by the path to the resource:

GET /mypage.html

The hypertext-only response was extremely simple as well:

<HTML>
My HTML page
</HTML>

There were no HTTP headers, status codes, URLs, or versioning, and the connection was
terminated immediately after receiving the response.

Since interest in the web was skyrocketing, and with HTTP/0.9 being severely limited,
both browsers and servers quickly made the protocol more versatile by adding new
capabilities. Some key changes:

• Header fields including rich metadata about the request and response (HTTP version
number, status code, content type).

• Two new methods — HEAD and POST.

• Additional content types (e.g., scripts, stylesheets, or media), so that the response was
no longer restricted to hypertext.

These modifications were not done in an orderly or agreed-upon fashion, leading to
different flavors of HTTP/0.9 in the wild, in turn causing interoperability problems. To
resolve these issues, an HTTP Working Group2 was set up, and in 1996, published HTTP/1.03
(defined via RFC 1945). It was an informational RFC, merely documenting all the usages
at the time. As such, HTTP/1.0 is not considered a formal specification or an internet
standard.

1 The Original HTTP as defined in 1991
2 The IETF HTTP Working Group
3 RFC 1945: Hypertext Transfer Protocol - HTTP/1.0

https://go.ably.com/wur
https://go.ably.com/9fu
https://go.ably.com/n6l

10 The WebSocket Handbook Chapter 1: The Road to WebSockets

In parallel with the efforts made on HTTP/1.0, work to properly standardize HTTP was in
progress. The first standardized version of the protocol, HTTP/1.1, was initially defined in
RFC 20684 and released in January 1997. Several subsequent HTTP/1.1 RFCs5 have been
released since then, most recently in 2014.

HTTP/1.1 introduces many feature enhancements and performance optimizations,
including:

• Persistent and pipelined connections.

• Virtual hosting.

• Content negotiation, chunked transfer, compression, and decompression.

• Cache support.

• More methods, bringing the total to seven — GET, HEAD, POST, PUT, DELETE, TRACE,
OPTIONS.

JavaScript joins the fold
While HTTP was maturing and being standardized, interest and adoption of the web were
growing rapidly. A competition (the so-called “browser wars”) for dominance in the usage
share of web browsers quickly commenced, initially pitting Microsoft’s Internet Explorer
against Netscape’s Navigator. Both companies wanted to have the best browser, so
features and capabilities were inevitably added on a regular basis to their browsers. This
competition for supremacy was a catalyst for fast technological breakthroughs.

In 1995, Netscape hired Brendan Eich with the goal of embedding scripting capabilities
into their Netscape Navigator browser. Thus, JavaScript was born. The first version of the
language was simple, and you could only use it for a few things, such as basic validation
of input fields before submitting an HTML form to the server. Limited as it was back
then, JavaScript brought dynamic experiences to a web that had been fully static until
that point. Progressively, JavaScript was enhanced, standardized, and adopted by all
browsers, becoming one of the core technologies of the web as we know it today.

4 RFC 2068: Hypertext Transfer Protocol - HTTP/1.1
5 IETF HTTP Working Group, HTTP Documentation, Core Specifications

https://go.ably.com/tqm
https://go.ably.com/mc2

11 The WebSocket Handbook Chapter 1: The Road to WebSockets

Hatching the realtime web
The first web applications started to appear in the late ‘90s and used technologies
like JavaScript and HTTP. Browsers were already ubiquitous, and users were growing
accustomed to the whole experience. Web technologies were constantly evolving, and
soon, attempts were made to deliver realtime web apps with rich, interactive, and
responsive end-user experiences.

We will now look at the main HTTP-centric design models that emerged for developing
realtime apps: AJAX and Comet.

AJAX
AJAX (short for Asynchronous JavaScript and XML) is a method of asynchronously
exchanging data with a server in the background and updating parts of a web page —
without the need for an entire page refresh (postback).

Publicly used as a term for the first time in 20056, AJAX encompasses several technologies:

• HTML (or XHTML) and CSS for presentation.

• Document Object Model (DOM) for dynamic display and interaction.

• XML or JSON for data interchange, and XSLT for XML manipulation.

• XMLHttpRequest7 (XHR) object for asynchronous communication.

• JavaScript to bind everything together.

It’s worth emphasizing the importance of XMLHttpRequest, a built-in browser object that
allows you to make HTTP requests in JavaScript. The concept behind XHR was initially
created at Microsoft and included in Internet Explorer 5, in 1999. In just a few years,
XMLHttpRequest would benefit from widespread adoption, being implemented by Mozilla
Firefox, Safari, Opera, and other browsers.

Let’s now look at how AJAX works, by comparing it to the classic model of building a web
app.

6 Jesse James Garrett, Ajax: A New Approach to Web Applications
7 XMLHttpRequest Living Standard

https://go.ably.com/7a4
https://go.ably.com/kva

12 The WebSocket Handbook Chapter 1: The Road to WebSockets

Figure 1.1: Classic model of a web app vs. the AJAX model

In a classic model, most user actions in the UI trigger an HTTP request sent to the server.
The server processes the request and returns the entire HTML page to the client.

In comparison, AJAX introduces an intermediary (an AJAX engine) between the user and
the server. Although it might seem counterintuitive, the intermediary significantly improves
responsiveness. Instead of loading the webpage, at the start of the session, the client
loads the AJAX engine, which is responsible for:

• Regularly polling the server on the client’s behalf.

• Rendering the interface the user sees, and updating it with data retrieved from the
server.

AJAX (and XMLHttpRequest request in particular) can be considered a black swan event
for the web. It opened up the potential for web developers to start building truly dynamic,
asynchronous, realtime-like web applications that could communicate with the server
silently in the background, without interrupting the user’s browsing experience. Google
was among the first to adopt the AJAX model in the mid-2000s, initially using it for Google
Suggest, and its Gmail and Google Maps products. This sparked widespread interest in
AJAX, which quickly became popular and heavily used.

13 The WebSocket Handbook Chapter 1: The Road to WebSockets

Comet
Coined8 in 2006, Comet is a web application design model that allows a web server to
push data to the browser. Similar to AJAX, Comet enables asynchronous communication.
Unlike classic AJAX (where the client periodically polls the server for updates), Comet
uses long-lived HTTP connections to allow the server to push updates whenever they’re
available, without the client explicitly requesting them.

The Comet model was made famous by organizations such as Google and Meebo. The
former initially used Comet to add web-based chat to Gmail, while Meebo used it for their
web-based chat app that enabled users to connect to AOL, Yahoo, and Microsoft chat
platforms through the browser. In a short time, Comet became a default standard for
building responsive, interactive web apps.

Several different techniques can be used to deliver the Comet model, the most well-
known being long polling9 and HTTP streaming. Let’s now quickly review how these two
work.

Long polling

Essentially a more efficient form of
polling, long polling is a technique
where the server elects to hold a client’s
connection open for as long as possible,
delivering a response only after data
becomes available or a timeout threshold
is reached. Upon receipt of the server
response, the client usually issues another
request immediately. Long polling is
often implemented on the back of
XMLHttpRequest, the same object that
plays a key role in the AJAX model.

HTTP streaming

Also known as HTTP server push, HTTP streaming is a data transfer technique that allows
a web server to continuously send data to a client over a single HTTP connection that
remains open indefinitely. Whenever there’s an update available, the server sends a
response, and only closes the connection when explicitly told to do so.

HTTP streaming can be achieved by using the chunked transfer encoding mechanism
available in HTTP/1.1. With this approach, the server can send response data in chunks of
newline-delimited strings, which are processed on the fly by the client.

Figure 1.2: High-level overview of long polling

8 Alex Russell, Comet: Low Latency Data for the Browser
9 Long Polling - Concepts and Considerations

https://go.ably.com/wjk
https://go.ably.com/2bg

14 The WebSocket Handbook Chapter 1: The Road to WebSockets

Here’s an example of a chunked response:

HTTP/1.1 200 OK
Content-Type: text/plain
Transfer-Encoding: chunked

7\r\n
Chunked\r\n
8\r\n
Response\r\n
7\r\n
Example\r\n
0\r\n
\r\n

When chunked transfer encoding is used, each server response includes
Transfer-Encoding: chunked, while the Content-Length header is omitted.

Server-Sent Events10 (SSE) is another option you can leverage to implement HTTP
streaming. SSE is a server push technology commonly used to send message updates or
continuous data streams to a browser client. SSE aims to enhance native, cross-browser
server-to-client streaming through a JavaScript API called EventSource, standardized11 as
part of HTML5 by the World Wide Web Consortium (W3C).

Here’s a quick example of opening a stream over SSE:

var source = new EventSource('URL_TO_EVENT_STREAM');
source.onopen = function () {
 console.log('connection to stream has been opened');
};
source.onerror = function (error) {
 console.log('An error has occurred while receiving stream', error);
};
source.onmessage = function (stream) {
 console.log('received stream', stream);
};

10 Server-Sent Events (SSE): A Conceptual Deep Dive
11 Server-sent events, HTML Living Standard

https://go.ably.com/irg
https://go.ably.com/1om

15 The WebSocket Handbook Chapter 1: The Road to WebSockets

Limitations of HTTP
AJAX and Comet paved the way for creating dynamic, realtime web apps. However —
even though they continue to be used nowadays, to a lesser extent — both AJAX and
Comet have their shortcomings.

Most of their limitations stem from using HTTP as the underlying transport protocol. The
problem is that HTTP was initially designed to serve hypermedia resources in a request-
response fashion. It hadn’t been optimized to power realtime apps that usually involve
high-frequency or ongoing client-server communication, and the ability to react instantly
to changes.

Hacking HTTP-based technologies to emulate the realtime web was bound to lead to all
sorts of drawbacks. We will now cover the main ones (without being exhaustive).

Limited scalability

HTTP polling, for example, involves sending requests to the server at fixed intervals to see
if there’s any new update to retrieve. High polling frequencies result in increased network
traffic and server demands; this doesn’t scale well, especially as the number of concurrent
users rises. Low polling frequencies will be less taxing on the server, but they may result in
delivery of stale information that has lost (part of) its value.

Although an improvement on regular polling, long polling is also intensive on the server,
and handling thousands of simultaneous long polling requests requires huge amounts of
resources.

Unreliable message ordering and delivery guarantees

Reliable message ordering can be an issue, since it’s possible for multiple HTTP requests
from the same client to be in flight simultaneously. Due to various factors, such as
unreliable network conditions, there’s no guarantee that the requests issued by the client
and the responses returned by the server will reach their destination in the right order.

Another problem is that a server may send a response, but network or browser issues
may prevent the message from being successfully received. Unless some sort of message
receipt confirmation process is implemented, a subsequent call to the server may result in
missed messages.

Depending on the server implementation, confirmation of message receipt by one client
instance may also cause another client instance to never receive an expected message at
all, as the server could mistakenly believe that the client has already received the data it is
expecting.

16 The WebSocket Handbook Chapter 1: The Road to WebSockets

Latency

The time required to establish a new HTTP connection is significant since it involves
a handshake with quite a few back and forth exchanges between the client and the
server. In addition to the slow start, we must also consider that HTTP requests are issued
sequentially. The next request is only sent once the response to the current request has
been received. Depending on network conditions, there can be delays before the client
gets a response, and the server receives the next request. All of this leads to increased
latency for the user — far from ideal in the context of realtime applications.

Although HTTP streaming techniques are better for lower latencies than (long) polling,
they are limited themselves (just like any other HTTP-based mechanism) by HTTP headers,
which increase message size and cause unnecessary delays. Often, the HTTP headers in
the response outweigh the core data being delivered12.

No bidirectional streaming

A request/response protocol by design, HTTP doesn’t support bidirectional, always-
on, realtime communication between client and server over the same connection. You
can create the illusion of bidirectional realtime communication by using two HTTP
connections. However, the maintenance of these two connections introduces significant
overhead on the server, because it takes double the resources to serve a single client.

With the web continuously evolving, and user expectations of rich, realtime web-based
experiences growing, it was becoming increasingly obvious that an alternative to HTTP
was needed.

12 Matthew O’Riordan, Google — polling like it’s the 90s

https://go.ably.com/zps

17 The WebSocket Handbook Chapter 1: The Road to WebSockets

Enter WebSockets
In 2008, the pain and limitations of using Comet when implementing anything resembling
realtime were being felt particularly keenly by developers Michael Carter and Ian Hickson.
Through collaboration on IRC13 and W3C mailing lists14, they came up with a plan to
introduce a new standard for modern, truly realtime communication on the web. Thus, the
name “WebSocket’’ was coined.

In a nutshell, WebSocket is a technology that enables bidirectional, full-duplex
communication between client and server over a persistent, single-socket connection. The
intent is to provide what is essentially an as-close-to-raw-as-possible TCP communication
layer to web application developers while adding a few abstractions to eliminate certain
friction that would otherwise exist concerning the way the web works. A WebSocket
connection starts as an HTTP request/response handshake; beyond this handshake,
WebSocket and HTTP are fundamentally different.

Figure 1.3: WebSockets vs. the traditional HTTP request/response model

The WebSocket technology includes two core building blocks:

• The WebSocket protocol. Enables communication between clients and servers over
the web, and supports transmission of binary data and text strings. For more details,
see Chapter 2: The WebSocket Protocol.

• The WebSocket API. Allows you to perform necessary actions, like managing the
WebSocket connection, sending and receiving messages, and listening for events
triggered by the server. For more details, see Chapter 3: The WebSocket API.

13 IRC logs, 18.06.2008
14 W3C mailing lists, TCPConnection feedback

https://go.ably.com/m92
https://go.ably.com/sg9

18 The WebSocket Handbook Chapter 1: The Road to WebSockets

Comparing WebSockets and HTTP
While HTTP is request-driven, WebSockets are event-driven. The table below illustrates
fundamental differences between the two technologies.

WEBSOCKETS HTTP/1.1

Communication

Full-duplex Half-duplex

Message exchange pattern

Bidirectional Request-response

Server push

Core feature Not natively supported

Overhead

Moderate overhead to establish the connection,

and minimal overhead per message.
Moderate overhead per request/connection.

State

Stateful Stateless

Table 1.1: Comparing the characteristics of WebSockets and HTTP/1.1

HTTP and WebSockets are designed for different use cases. For example, HTTP is a good
choice if your app relies heavily on CRUD operations, and there’s no need for the user
to react to changes quickly. On the other hand, when it comes to scalable, low-latency
realtime applications, WebSockets are the way to go. More about this in the next section.

Use cases and benefits
The WebSocket technology has broad applicability. You can use it for different purposes,
such as streaming data between backend services, or connecting a backend with a
frontend via long-lasting, full-duplex connections. In a nutshell, WebSockets are an
excellent choice for architecting event-driven systems and building realtime apps and
services where it’s essential for data to be delivered immediately.

19 The WebSocket Handbook Chapter 1: The Road to WebSockets

We can broadly group WebSocket use cases into two distinct categories:

• Realtime updates, where the communication is unidirectional, and the server is
streaming low-latency (and often frequent) updates to the client. Think of live sports
updates, alerts, realtime dashboards, or location tracking, to name just a few use
cases.

• Bidirectional communication, where both the client and the server can send and
receive messages. Examples include chat, virtual events, and virtual classrooms (the
last two usually involve features like polls, quizzes, and Q&As). WebSockets can also
be used to underpin multi-user synchronized collaboration functionality, such as
multiple people editing the same document simultaneously.

And here are some of the main benefits of using WebSockets:

• Improved performance. Compared to HTTP, WebSockets eliminate the need for a
new connection with every request, drastically reducing the size of each message (no
HTTP headers). This helps save bandwidth, improves latency, and makes WebSockets
more scalable than HTTP (note that scaling WebSockets is far from trivial, but at
scale, WebSockets are significantly less taxing on the server-side).

• Extensibility. Flexibility is ingrained into the design of the WebSocket technology,
which allows for the implementation of subprotocols (application-level protocols)
and extensions for additional functionality. Learn more about Extensions and
Subprotocols.

• Fast reaction times. As an event-driven technology, WebSockets allow data to be
transferred without the client requesting it. This characteristic is desirable in scenarios
where the client needs to react quickly to an event (especially ones it cannot predict,
such as a fraud alert).

Adoption
Initially called TCPConnection, the WebSocket interface made its way into the HTML5
specification15, which was first released as a draft in January 2008. The WebSocket
protocol was standardized in 2011 via RFC 6455; more about this in Chapter 2: The
WebSocket Protocol.

In December 2009, Google Chrome 4 was the first browser to ship full support for
WebSockets. Other browser vendors started to follow suit over the next few years; today,
all major browsers have full support for WebSockets. Going beyond web browsers,
WebSockets can be used to power realtime communication across various types of user
agents — for example, mobile apps.

Nowadays, WebSockets are a key technology for building scalable realtime web apps.
The WebSocket API and protocol have a thriving community, which is reflected by a
variety of client and server options (both open-source and commercial), developer
ecosystems, and myriad real-life implementations.

15 Web sockets, HTML Living Standard

https://go.ably.com/0u9

20 The WebSocket Handbook Chapter 2: The WebSockets Protocol

CHAPTER 2

The WebSocket Protocol
In December 2011, the Internet Engineering Task Force
(IETF) standardized the WebSocket protocol through RFC
645516. In coordination with IETF, the Internet Assigned
Numbers Authority (IANA) maintains the WebSocket
Protocol Registries17, which define many of the codes and
parameter identifiers used by the protocol.

This chapter covers key considerations related to the WebSocket protocol, as described
in RFC 6455. You’ll find out how to establish a WebSocket connection and exchange
messages, what kind of data can be sent over WebSockets, what types of extensions and
subprotocols you can use to augment WebSockets.

Protocol overview
The WebSocket protocol enables ongoing, full-duplex, bidirectional communication
between web servers and web clients over an underlying TCP connection.

In a nutshell, the base WebSocket protocol consists of an opening handshake (upgrading
the connection from HTTP to WebSockets), followed by data transfer. After the client and
server successfully negotiate the opening handshake, the WebSocket connection acts
as a persistent full-duplex communication channel where each side can, independently,
send data at will. Clients and servers transfer data back and forth in conceptual units
referred to as messages, which, as we describe shortly, can consist of one or more frames.
Once the WebSocket connection has served its purpose, it can be terminated via a closing
handshake.

16 RFC 6455: The WebSocket Protocol
17 IANA WebSocket Protocol Registries

https://go.ably.com/5av
https://go.ably.com/6hy

21 The WebSocket Handbook Chapter 2: The WebSockets Protocol

Figure 2.1: High-level overview of a WebSocket connection

URI schemes and syntax
The WebSocket protocol defines two URI schemes for traffic between server and client:

• ws, used for unencrypted connections.

• wss, used for secure, encrypted connections over Transport Layer Security (TLS).

The WebSocket URI schemes are analogous to the HTTP ones; the wss scheme
uses the same security mechanism as https to secure connections, while ws
corresponds to http.

The rest of the WebSocket URI follows a generic syntax, similar to HTTP. It consists of
several components: host, port, path, and query, as highlighted in the example below.

Figure 2.2: WebSocket URI components

It’s worth mentioning that:

• The port component is optional; the default is port 80 for ws, and port 443 for wss.

• Fragment identifiers are not allowed in WebSocket URIs.

• The hash character (#) must be escaped as %23.

22 The WebSocket Handbook Chapter 2: The WebSockets Protocol

Opening handshake
The process of establishing a WebSocket connection is known as the opening handshake,
and consists of an HTTP/1.1 request/response exchange between the client and the
server. The client always initiates the handshake; it sends a GET request to the server,
indicating that it wants to upgrade the connection from HTTP to WebSockets. The
server must return an HTTP 101 Switching Protocols response code for the WebSocket
connection to be established. Once that happens, the WebSocket connection can be
used for ongoing, bidirectional, full-duplex communications between server and client.

RFC 844118 introduces a separate mechanism that allows you to bootstrap
WebSockets with HTTP/2. At the time of writing, this mechanism hasn’t
been widely adopted by browsers or libraries implementing WebSockets.
Consequently, it is out of the scope of this book (but we may cover it in future
versions).

Client request
Here’s a basic example of a GET request made by the client to initiate the opening
handshake:

GET wss://example.com:8181/ HTTP/1.1
Host: localhost: 8181
Connection: Upgrade
Upgrade: websocket
Sec-WebSocket-Version: 13
Sec-WebSocket-Key: zy6Dy9mSAIM7GJZNf9rI1A==

The request must contain the following headers:

• Host

• Connection

• Upgrade

• Sec-WebSocket-Version

• Sec-WebSocket-Key

In addition to the required headers, the request may also contain optional ones. See
the Opening handshake headers section later in this chapter for more information on
headers.

18 RFC 8441: Bootstrapping WebSockets with HTTP/2

https://go.ably.com/1em

23 The WebSocket Handbook Chapter 2: The WebSockets Protocol

If any header is not understood or has an incorrect value, the server should stop
processing the request and return a response with an appropriate error code,
e.g., 400 Bad Request.

Server response
The server must return an HTTP 101 Switching Protocols response code for the
WebSocket connection to be successfully established:

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Sec-WebSocket-Accept: EDJa7WCAQQzMCYNJM42Syuo9SqQ=
Upgrade: websocket

The response must contain several headers: Connection, Upgrade, and Sec-WebSocket-
Accept. Other optional headers may be included, such as Sec-WebSocket-Extensions,
or Sec-WebSocket-Protocol (provided they were passed in the client request). See the
Opening handshake headers section in this chapter for additional details.

If the status code returned by the server is anything but HTTP 101 Switching
Protocol, the handshake will fail, and the WebSocket connection will not be
established.

24 The WebSocket Handbook Chapter 2: The WebSockets Protocol

Opening handshake headers
The table below describes the headers used by the client and the server during the
opening handshake.

HEADER REQUIRED DESCRIPTION

Host Yes The host name and optionally the port number of the

server to which the request is being sent. If no port

number is included, a default value is implied (80 for

ws, or 433 for wss).

Connection Yes Indicates that the client wants to negotiate a change

in the way the connection is being used. Value must be

Upgrade.

Also returned by the server.

Upgrade Yes Indicates that the client wants to upgrade the

connection to alternative means of communication.

Value must be websocket.

Also returned by the server.

Sec-WebSocket-
Version

Yes The only accepted value is 13. Any other version passed

in this header is invalid.

Sec-WebSocket-
Key

Yes A base64-encoded one-time random value (nonce) sent

by the client. Automatically handled for you by most

WebSocket libraries or by using the WebSocket class

provided in browsers.

See the Sec-WebSocket-Key and Sec-WebSocket-Accept

section in this chapter for more details.

Sec-WebSocket-
Accept

Yes A base64-encoded SHA-1 hashed value returned by the

server as a direct response to Sec-WebSocket-Key.

Indicates that the server is willing to initiate the

WebSocket connection.

See the Sec-WebSocket-Key and Sec-WebSocket-Accept

section in this chapter for more details.

25 The WebSocket Handbook Chapter 2: The WebSockets Protocol

HEADER REQUIRED DESCRIPTION

Sec-WebSocket-
Protocol

No Optional header field, containing a list of values

indicating which subprotocols the client wants to speak,

ordered by preference.

The server needs to include this field together with

one of the selected subprotocol values (the first one it

supports from the list) in the response.

See the Subprotocols section later in this chapter for

more details.

Sec-WebSocket-
Extensions

No Optional header field, initially sent from the client to

the server, and then subsequently sent from the server

to the client.

It helps the client and server agree on a set of

protocol-level extensions to use for the duration of the

connection.

See the Extensions section later in this chapter for more

details.

Origin No Header field sent by all browser clients (optional for

non-browser clients).

Used to protect against unauthorized cross-origin use of

a WebSocket server by scripts using the WebSocket API

in a web browser.

The connection will be rejected if the Origin indicated

is unacceptable to the server.

Table 2.1: Opening handshake headers

Some common, optional headers like User-Agent, Referer, or Cookie may also be used in
the opening handshake. However, we have omitted them from the table above, as they
don’t directly pertain to WebSockets.

26 The WebSocket Handbook Chapter 2: The WebSockets Protocol

Sec-WebSocket-Key and Sec-WebSocket-Accept
Let’s now quickly cover two of the required headers used during the opening handshake:
Sec-WebSocket-Key, and Sec-WebSocket-Accept. Together, these headers are essential
in guaranteeing that both the server and the client are capable of communicating over
WebSockets.

First, we have Sec-WebSocket-Key, which is passed by the client to the server, and contains
a 16-byte, base64-encoded one-time random value (nonce). Its purpose is to help ensure
that the server does not accept connections from non-WebSocket clients (e.g., HTTP
clients) that are being abused (or misconfigured) to send data to unsuspecting WebSocket
servers. Here’s an example of Sec-WebSocket-Key:

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

In direct relation to Sec-WebSocket-Key, the server response includes a Sec-WebSocket-
Accept header. This header contains a base64-encoded SHA-1 hashed value generated
by concatenating the Sec-WebSocket-Key nonce sent by the client, and the static value
(UUID) 258EAFA5-E914-47DA-95CA-C5AB0DC85B11.

Based on the Sec-WebSocket-Key example provided above, here’s the Sec-WebSocket-
Accept header returned by the server:

Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

If the Sec-WebSocket-Key header is missing from the client-initiated handshake,
the server will stop processing the request and return an HTTP response with
an appropriate error code (400 Bad Request, for example). If there’s something
wrong with the value of Sec-WebSocket-Accept, or if the header is missing from
the server response, the WebSocket connection will not be established (the
client fails the connection).

27 The WebSocket Handbook Chapter 2: The WebSockets Protocol

Message frames
After a successful opening handshake, the client and the server can use the WebSocket
connection to exchange messages in full-duplex mode. A WebSocket message consists
of one or more frames (see the FIN bit and fragmentation section later in this chapter for
details on multi-frame messages).

The WebSocket frame has a binary syntax and contains several pieces of information, as
shown in the following figure:

Figure 2.3: Anatomy of a WebSocket frame

Let’s quickly summarize them:

• FIN bit - indicates whether the frame is the final fragment in a WebSocket message.

• RSV 1, 2, 3 - reserved for WebSocket extensions.

• Opcode - determines how to interpret the payload data.

• Mask - indicates whether the payload is masked or not.

• Masking key - key used to unmask the payload data.

• (Extended) payload length - the length of the payload.

• Payload data - consists of application and extension data.

We will now take a more detailed look at all these constituent parts of a WebSocket frame.

28 The WebSocket Handbook Chapter 2: The WebSockets Protocol

FIN bit and fragmentation
There are numerous scenarios where fragmenting a WebSocket message into multiple
frames is required (or at least desirable). For example, fragmentation is often used to
improve performance. Without fragmentation, an endpoint would have to buffer the
entire message before sending it. With fragmentation, the endpoint can choose a
reasonably sized buffer, and when that is full, send subsequent frames as a continuation.
The receiving endpoint then assembles the frames to recreate the WebSocket message.

Per RFC 645519, another use case for fragmentation is represented by multiplexing, where
“[...] it is not desirable for a large message on one logical channel to monopolize the
output channel, so the multiplexing needs to be free to split the message into smaller
fragments to better share the output channel.”

All data frames that comprise a WebSocket message must be of the same type
(text or binary); you can’t have a fragmented message that consists of both text
and binary frames. However, a fragmented WebSocket message may include
control frames. See the Opcodes section later in this chapter for more details
about frame types.

Let’s now look at some quick examples to illustrate fragmentation. Here’s what a single-
frame message might look like:

0x81 0x05 0x48 0x65 0x6c 0x6c 0x6f (contains “Hello”)

In comparison, with fragmentation, the same message would look like this:

0x01 0x03 0x48 0x65 0x6c (contains “Hel”)
0x80 0x02 0x6c 0x6f (contains “lo”)

The WebSocket protocol makes fragmentation possible via the first bit of the WebSocket
frame — the FIN bit, which indicates whether the frame is the final fragment in a
message. If it is, the FIN bit must be set to 1. Any other frame must have the FIN bit clear.

19 RFC 6455: The WebSocket Protocol

https://go.ably.com/5av

29 The WebSocket Handbook Chapter 2: The WebSockets Protocol

RSV 1-3
RSV1, RSV2, and RSV3 are reserved bits. They must be 0 unless an extension was negotiated
during the opening handshake that defines non-zero values. See the Extensions section in
this chapter for more details.

Opcodes
Every frame has an opcode that determines how to interpret that frame’s payload data.
The standard opcodes currently in use are defined by RFC 6455 and maintained by
IANA20.

OPCODE DESCRIPTION

0 Continuation frame; continues the payload from the previous frame.

1 Indicates a text frame (UTF-8 text data).

2 Indicates a binary frame.

3-7 Reserved for custom data frames.

8 Connection close frame; leads to the connection being terminated.

9
A ping frame. Serves as a heartbeat mechanism ensuring the connection is still

alive. The receiver must respond with a pong frame.

10
A pong frame. Serves as a heartbeat mechanism ensuring the connection is still

alive. Sent as a response after receiving a ping frame.

11-15 Reserved for custom control frames.

Table 2.2: Frame opcodes

8 (Close), 9 (Ping), and 10 (Pong) are known as control frames, and they are used
to communicate state about the WebSocket connection.

20 IANA WebSocket Opcode Registry

https://go.ably.com/jex

30 The WebSocket Handbook Chapter 2: The WebSockets Protocol

Masking
Each WebSocket frame sent by the client to the server needs to be masked with the help
of a random masking-key (32-bit value). This key is contained within the frame, and it’s
used to obfuscate the payload data. However, when data flows the other way around,
the server must not mask any frames it sends to the client.

A masking bit set to 1 indicates that the respective frame is masked (and
therefore contains a masking-key). The server will close the WebSocket
connection if it receives an unmasked frame.

On the server-side, frames received from the client must be unmasked before further
processing. Here’s an example of how you can do that:

var unmask = function(mask, buffer) {
 var payload = new Buffer(buffer.length);
 for (var i=0; i<buffer.length; i++) {
 payload[i] = mask[i % 4] ^ buffer[i];
 }
 return payload;
}

Masking is used as a security mechanism that helps prevent cache poisoning.

Payload length
The WebSocket protocol encodes the length of the payload data using a variable number
of bytes:

• For payloads <126 bytes, the length is packed into the first two frame header bytes.

• For payloads of 126 bytes, two extra header bytes are used to indicate length.

• If the payload is 127 bytes, eight additional header bytes are used to indicate its
length.

31 The WebSocket Handbook Chapter 2: The WebSockets Protocol

Payload data
The WebSocket protocol supports two types of payload data: text (UTF-8 Unicode
text) and binary. In JavaScript, text data is referred to as String, while binary data is
represented by the ArrayBuffer and Blob classes. For details on sending and receiving
data over WebSockets, together with usage examples, see Chapter 3: The WebSocket API.

Payload data consists of application data, and potentially extension data
(provided extensions were negotiated during the opening handshake).

Each frame’s payload type is indicated via a 4-bit opcode (1 for text or 2 for binary).

Closing handshake
Compared to the opening handshake, the closing handshake is a much simpler process.
You initiate it by sending a close frame with an opcode of 8. In addition to the opcode,
the close frame may contain a body that indicates the reason for closing. This body
consists of a status code (integer) and a UTF-8 encoded string (the reason).

The standard status codes that can be used during the closing handshake are defined by
RFC 6455; additional, custom close codes can be registered with IANA21.

STATUS CODE NAME DESCRIPTION

0-999 N/A Codes below 1000 are invalid and cannot be used.

1000 Normal closure Indicates a normal closure, meaning that the purpose

for which the WebSocket connection was established

has been fulfilled.

1001 Going away Should be used when closing the connection and there

is no expectation that a follow-up connection will

be attempted (e.g., server shutting down, or browser

navigating away from the page).

1002 Protocol error The endpoint is terminating the connection due to a

protocol error.

21 IANA WebSocket Close Code Number Registry

https://go.ably.com/yy4

32 The WebSocket Handbook Chapter 2: The WebSockets Protocol

STATUS CODE NAME DESCRIPTION

1003 Unsupported data The connection is being terminated because the

endpoint received data of a type it cannot handle (e.g.,

a text-only endpoint receiving binary data).

1004 Reserved Reserved. A meaning might be defined in the future.

1005 No status received Used by apps and the WebSocket API to indicate

that no status code was received, although one was

expected.

1006 Abnormal closure Used by apps and the WebSocket API to indicate that

a connection was closed abnormally (e.g., without

sending or receiving a close frame).

1007 Invalid payload

data

The endpoint is terminating the connection because it

received a message containing inconsistent data (e.g.,

non-UTF-8 data within a text message).

1008 Policy violation The endpoint is terminating the connection because

it received a message that violates its policy. This is a

generic status code; it should be used when other status

codes are not suitable, or if there is a need to hide

specific details about the policy.

1009 Message too big The endpoint is terminating the connection due to

receiving a data frame that is too large to process.

1010 Mandatory

extension

The client is terminating the connection because the

server failed to negotiate an extension during the

opening handshake.

1011 Internal error The server is terminating the connection because it

encountered an unexpected condition that prevented it

from fulfilling the request.

1012 Service restart The server is terminating the connection because it is

restarting.

1013 Try again later The server is terminating the connection due to a

temporary condition, e.g., it is overloaded.

1014 Bad gateway The server was acting as a gateway or proxy and

received an invalid response from the upstream server.

Similar to 502 Bad Gateway HTTP status code.

1015 TLS handshake Reserved. Indicates that the connection was closed due

to a failure to perform a TLS handshake (e.g., the server

certificate can’t be verified).

33 The WebSocket Handbook Chapter 2: The WebSockets Protocol

STATUS CODE NAME DESCRIPTION

1016-1999 N/A Reserved for future use by the WebSocket standard.

2000-2999 N/A Reserved for future use by WebSocket extensions.

3000-3999 N/A Reserved for use by libraries, frameworks, and

applications. Available for registration at IANA via first-

come, first-serve.

4000-4999 N/A Range reserved for private use in applications.

Table 2.3: Closing handshake status codes

Both the client and the server can initiate the closing handshake. Upon receiving a close
frame, an endpoint (client or server) has to send a close frame as a response (echoing the
status code received).

Once a close frame has been sent, no more data frames can pass over the
WebSocket connection.

After an endpoint has both sent and received a close frame, the closing handshake is
complete, and the WebSocket connection is considered closed.

34 The WebSocket Handbook Chapter 2: The WebSockets Protocol

Subprotocols
Subprotocols (this is the terminology used in RFC 6455) are application-level protocols
layered on top of the raw WebSocket protocol. They help define specific formats and
higher-level semantics for data exchanges between client and server. Subprotocols can
ensure agreement not only about the way the data is structured, but also about the way
communication must commence, continue, and eventually terminate.

Subprotocols can be grouped into three main categories:

• Registered protocols. This refers to the protocols that are registered with IANA22.

• Open protocols. Open protocols, such as Message Queuing Telemetry Transport
(MQTT)23 or Simple Text Oriented Message Protocol (STOMP)24.

• Custom protocols. Refers to open-source libraries or proprietary solutions introducing
their specific flavor of WebSocket-based communications.

Subprotocols are negotiated during the opening handshake. The client uses the Sec-
WebSocket-Protocol header to pass along one or more comma-separated subprotocols,
as shown in this example:

Sec-WebSocket-Protocol: amqp, v12.stomp

Provided it understands the subprotocols passed in the client request, the server must pick
one (and only one) and return it alongside the Sec-WebSocket-Protocol header. From this
point onwards, the client and server can communicate over the negotiated subprotocol.

If the server doesn’t agree with any of the subprotocols suggested, the Sec-
WebSocket-Protocol header won’t be included in the response.

22 IANA WebSocket Subprotocol Name Registry
23 Kayla Matthews, MQTT: A Conceptual Deep-Dive
24 The Simple Text Oriented Messaging Protocol (STOMP)

https://go.ably.com/afe
https://go.ably.com/qzf
https://go.ably.com/g97

35 The WebSocket Handbook Chapter 2: The WebSockets Protocol

Extensions
Extensions are named as such because they extend the WebSocket protocol. They can
be used to add new opcodes, data fields, and additional capabilities (multiplexing, for
example) to the standard WebSocket protocol.

At the time of writing, there are only a couple of extensions registered with IANA25, such
as permessage-deflate, which compresses the payload data portion of WebSocket
frames. If you’re interested in developing your own extension, you can use an open-source
framework like websocket-extensions26.

Extensions are negotiated during the opening handshake. The client uses the Sec-
Websocket-Extensions header to pass along the extensions it wishes to use, as shown in
this example:

Sec-WebSocket-Extensions: permessage-deflate, my-custom-extension

Provided it supports the extensions sent in the client request, the server must include
them in the response, alongside the Sec-WebSocket-Extensions header. From this point
onwards, the client and server can communicate over WebSockets using the extensions
they’ve negotiated.

Security
In this section, we will cover some of the mechanisms you can use to secure WebSocket
connections, and communication done over the WebSocket protocol. This is by no means
an exhaustive section; it only aims to provide a high-level overview of several security-
related considerations. More about the complex topic of WebSockets security will be
treated in future versions of this book.

Let’s start with the Origin header, which is sent by all browser clients (optional for non-
browsers) to the server during the opening handshake. The Origin header is essential
for securing cross-domain communication. Specifically, if the Origin indicated is
unacceptable, the server can fail the handshake (usually by returning an HTTP 403
Forbidden status code). This ability can be extremely helpful in mitigating denial of service
(DoS) attacks.

25 IANA WebSocket Extension Name Registry
26 The websocket-extensions framework

https://go.ably.com/2ul
https://go.ably.com/363

36 The WebSocket Handbook Chapter 2: The WebSockets Protocol

Speaking of headers used during the opening handshake, we must also mention Sec-
WebSocket-Key and Sec-WebSocket-Accept. In a nutshell, the purpose of these headers
is to protect unsuspecting WebSocket servers from cross-protocol attacks initiated by
non-WebSocket clients. Together, Sec-WebSocket-Key and Sec-WebSocket-Accept ensure
that both the client and the server can, in fact, communicate over WebSockets. If there’s
any issue involving these two headers (e.g., Sec-WebSocket-Key is missing from the client
request), the WebSocket connection will not be established.

The WebSocket protocol doesn’t prescribe any particular way that servers can
authenticate clients. For example, you can handle authentication during the
opening handshake, by using cookie headers. Another option is to manage
authentication (and authorization) at the application level, by using techniques
such as JSON Web Tokens27.

So far, we’ve covered security mechanisms that are used during connection establishment.
Now, let’s look at some aspects that impact security during data exchange between
the client and the server. First of all, to reduce the chance of man-in-the-middle
and eavesdropping attacks (especially when exchanging critical, sensitive data), it’s
recommended to use the wss URI scheme — which uses TLS to encrypt the connection, just
like https.

We’ve talked about message frames earlier in this chapter, and mentioned that frames
sent by the client to the server need to be masked with the help of a random masking-
key (32-bit value). This key is contained within the frame, and it’s used to obfuscate the
payload data. Frames need to be unmasked by the server before further processing.
Masking makes WebSocket traffic look different from HTTP traffic, which is especially useful
when proxy servers are involved. That’s because some proxy servers may not “understand”
the WebSocket protocol, and, were it not for the mask, they might mistake it for regular
HTTP traffic; this could lead to all sorts of problems, such as cache poisoning.

27 RFC 7519: JSON Web Token (JWT)

https://go.ably.com/par

37 The WebSocket Handbook Chapter 3: The WebSocket API

CHAPTER 3

The WebSocket API
This chapter introduces you to the WebSocket Application
Programming Interface (API), which extends the
WebSocket protocol to web applications. The WebSocket
API enables event-driven communication over a persistent
connection. This allows you to build web apps that are
truly realtime and less resource-intensive on both the client
and the server compared to HTTP techniques.

In the following sections, we’ll look at the constituent
components of the WebSocket API — its events, methods,
and properties.

Overview
Defined in the HTML Living Standard28, the WebSocket API is a technology that makes
it possible to open a persistent two-way, full-duplex communication channel between
a web client and a web server. The WebSocket interface enables you to send messages
asynchronously to a server and receive event-driven responses without having to poll for
updates.

Almost all modern browsers support the WebSocket API29. Additionally, there are plenty
of frameworks and libraries — both open-source and commercial solutions — that
implement WebSocket APIs. See the Resources section in this book for more details.

For the rest of this chapter, we will cover the core capabilities of the WebSocket API. As you
will see, it’s intuitive, designed with simplicity in mind, and trivial to use.

28 Web sockets, HTML Living Standard
29 Can I use WebSockets?

https://go.ably.com/0u9
https://go.ably.com/0x5

38 The WebSocket Handbook Chapter 3: The WebSocket API

The WebSocket server
A WebSocket server can be written in any server-side programming language that is
capable of Berkeley sockets30. The server listens for incoming WebSocket connections using
a standard TCP socket. Once the opening handshake has been negotiated, the server
must be able to send, receive and process WebSocket messages.

See Chapter 4: Building a Web App with WebSockets to learn how to create your own
WebSocket server in Node.js.

The WebSocket constructor
To get started with the WebSocket API on the client-side, the first thing to do is to
instantiate a WebSocket object, which will automatically attempt to open the connection
to the server:

const socket = new WebSocket('wss://example.org');

The WebSocket constructor contains a required parameter — the url to the WebSocket
server. Additionally, the optional protocols parameter may also be included, to indicate
one or more WebSocket subprotocols (application-level protocols) that can be used
during the client-server communication:

const socket = new WebSocket('wss://example.org', 'myCustomProtocol');

Once the WebSocket object is created and the connection is established, the client can
start exchanging data with the server.

Instantiating the WebSocket object essentially initiates the opening handshake
we mentioned in the previous chapter.

30 Berkeley sockets

https://go.ably.com/glt

39 The WebSocket Handbook Chapter 3: The WebSocket API

Events
WebSocket programming follows an asynchronous, event-driven programming model. As
long as a WebSocket connection is open, the client and the server simply listen for events
in order to handle incoming data and changes in connection status (with no need for
polling).

The WebSocket API supports four types of events:

• open

• message

• error

• close

In JavaScript, WebSocket events can be handled by using “onevent” properties
(for example, onopen is used to handle open events). Alternatively, you can use
the addEventListener() method. Either way, your code will provide callbacks
that will execute every time an event is fired.

Open
The open event is raised when a WebSocket connection is established. It indicates that the
opening handshake between the client and the server was successful, and the WebSocket
connection can now be used to send and receive data. Here’s a usage example:

// Create WebSocket connection
const socket = new WebSocket('wss://example.org');

// Connection opened
socket.onopen = function(e) {
 console.log('Connection open!');
};

40 The WebSocket Handbook Chapter 3: The WebSocket API

Message
The message event is fired when data is received through a WebSocket. Messages
might contain string (plain text) or binary data, and it’s up to you how that data will be
processed and visualized.

Here’s an example of how to handle a message event:

socket.onmessage = function(msg) {
 if(msg.data instanceof ArrayBuffer) {
 processArrayBuffer(msg.data);
 } else {
 processText(msg.data);
 }
 }

Error
The error event is fired in response to unexpected failures or issues (for example, some
data couldn’t be sent). Here’s how you listen for error events:

socket.onerror = function(e) {
 console.log('WebSocket failure', e);
 handleErrors(e);
};

Errors cause the WebSocket connection to close, so an error event is always
shortly followed by a close event.

41 The WebSocket Handbook Chapter 3: The WebSocket API

Close
The close event fires when the WebSocket connection closes. This can be for a variety
of reasons, such as a connection failure, a successful closing handshake, or TCP errors.
Once the connection is terminated, the client and server can no longer send or receive
messages.

This is how you listen for a close event:

socket.onclose = function(e) {
 console.log('Connection closed', e);
};

You can manually trigger calling the close event by executing the close()
method.

Methods
The WebSocket API supports two methods: send() and close().

send()
Once the connection has been established, you’re almost ready to start sending and
receiving messages to and from the WebSocket server. But before doing that, you first
have to ensure that the connection is open and ready to receive messages. You can
achieve this in two main ways.

The first option is to trigger the send() method from within the onopen event handler, as
demonstrated in the following example:

socket.onopen = function(e) {
 socket.send(JSON.stringify({'msg': 'payload'}));
}

42 The WebSocket Handbook Chapter 3: The WebSocket API

The second way is to check the readyState property and choose to send data only when
the WebSocket connection is open:

function processEvent(e) {
 if(socket.readyState === WebSocket.OPEN) {
 // Socket open, send!
 socket.send(e);
 } else {
 // Show an error, queue it for sending later, etc
 }
}

The two code snippets above show how to send text (string) messages. However, in
addition to strings, you can also send binary data (Blob or ArrayBuffer), as shown in this
example:

var buffer = new ArrayBuffer(128);
socket.send(buffer);

var intview = new Uint32Array(buffer);
socket.send(intview);

var blob = new Blob([buffer]);
socket.send(blob);

After sending one or more messages, you can leave the WebSocket connection open for
further data exchanges, or call the close() method to terminate it.

close()
The close() method is used to close the WebSocket connection (or connection attempt).
It’s essentially the equivalent of the closing handshake we covered previously, in Chapter
2. After this method is called, no more data can be sent or received over the WebSocket
connection.

If the connection is already closed, calling the close() method does nothing.

Here’s the most basic example of calling the close() method:

socket.close();

43 The WebSocket Handbook Chapter 3: The WebSocket API

Optionally, you can pass two arguments with the close() method:

• code. A numeric value indicating the status code explaining why the connection is
being closed. See the Closing handshake section in Chapter 2 for more details about
all the status codes that can be used.

• reason. A human-readable string explaining why the connection is closing.

Here’s an example of calling the close() method with the two optional parameters:

socket.close(1003, 'Unsupported data type!');

Properties
The WebSocket object exposes several properties containing details about the WebSocket
connection.

binaryType
The binaryType property controls the type of binary data being received over the
WebSocket connection. The default value is blob; additionally, WebSockets also support
arraybuffer.

bufferedAmount
Read-only property that returns the number of bytes of data queued for transmission but
not yet sent. The value of bufferedAmount resets to zero once all queued data has been
sent.

bufferedAmount is most useful particularly when the client application transports large
amounts of data to the server. Even though calling send() is instant, actually transmitting
that data over the internet is not. Browsers will buffer outgoing data on behalf of your
client application. The bufferedAmount property is useful for ensuring that all data is sent
before closing a connection, or performing your own throttling on the client-side.

Below is an example of how to use bufferedAmount to send updates every second, and
adjust accordingly if the network cannot handle the rate:

44 The WebSocket Handbook Chapter 3: The WebSocket API

// 10k max buffer size.
var THRESHOLD = 10240;

// Create a New WebSocket connection
const socket = new WebSocket('wss://example.org');

// Listen for the opening event
socket.onopen = function () {
 // Attempt to send update every second.
 setInterval(function () {
 // Send only if the buffer is not full
 if (socket.bufferedAmount < THRESHOLD) {
 socket.send(getApplicationState());
 }
 }, 1000);
};

extensions
Read-only property that returns the name of the WebSocket extensions that were
negotiated between client and server during the opening handshake.

If no extensions were negotiated during connection establishment, the
extensions property returns an empty string.

“onevent” properties
These properties are called to run associated handler code whenever a WebSocket event
is fired. There are four types of “onevent” properties, one for each type of event:

PROPERTY DESCRIPTION

onopen Called when the WebSocket connection’s readyState property changes to

1; this indicates that the connection is open and ready to send and receive

data.

onmessage Called when a message is received from the server.

onerror Gets called when an error event occurs, impacting the WebSocket connection.

onclose Called with a close event when the WebSocket’s connection readyState

property changes to 3; this indicates that the connection is closed.

Table 3.1: “onevent” properties

45 The WebSocket Handbook Chapter 3: The WebSocket API

protocol
Read-only property returning the name of the WebSocket subprotocol that was
negotiated for communication between the client and server during the opening
handshake.

Subprotocols are specified via the protocols parameter when creating the
WebSocket object (see The WebSocket constructor section earlier in this chapter
for details). If no protocol is specified during connection establishment, the
protocol property will return an empty string.

readyState
Read-only property that returns the current state of the WebSocket connection. The table
below shows the values you can see reflected by this property, and their meaning:

VALUE STATE DESCRIPTION

0 CONNECTING Socket has been created, but the connection is not yet

open.

1 OPEN The connection is open and ready to communicate.

2 CLOSING The connection is in the process of closing.

3 CLOSED The connection is closed or couldn’t be opened.

Table 3.2: WebSocket connection states

The value of readyState will change over time. It’s recommended to check
it periodically to understand the lifespan and life cycle of the WebSocket
connection.

url
Read-only property that returns the absolute URL of the WebSocket, as resolved by the
constructor.

46 The WebSocket Handbook Chapter 4: Building a Web App with WebSockets

CHAPTER 4

Building a Web App
with WebSockets
The initial version of this chapter was written and published by Jo Franchetti31

In this chapter, we will look at how to build a realtime web
app with WebSockets and Node.js: an interactive cursor
position-sharing demo. It’s the kind of project that requires
bidirectional, instant communication between client
and server — the type of use case where the WebSocket
technology truly shines.

WebSocket clients and servers
To leverage the WebSocket technology on the server-side, a backend application is
required. For our demo, we’ll use Node.JS, a lightweight and efficient asynchronous event-
driven JavaScript runtime. Node.js is an excellent choice for building scalable realtime
web applications and maintaining many hundreds of concurrent WebSocket connections.
We’ll look at how to implement two different Node.js libraries as the WebSocket server: ws
and SockJS.

Using WebSockets in the frontend is fairly straightforward, via the WebSocket API built
into all modern browsers (we’ll use this API on the client-side in the first part of the demo,
alongside ws on the server-side). Additionally, there are plenty of libraries and solutions
implementing the WebSocket technology on both the client-side and the server-side. This
includes SockJS, which we will cover in the second part of the demo.

For more details about WebSocket client and server implementations, see the Resources
section.

31 Jo Franchetti, WebSockets and Node.js — testing WS and SockJS by building a web app

https://go.ably.com/dsw

47 The WebSocket Handbook Chapter 4: Building a Web App with WebSockets

ws — a Node.js WebSocket library
ws32 is a WebSocket server for Node.js. It’s quite low-level: you listen to incoming
connection requests and respond to raw messages as either strings or byte buffers.

In order to demonstrate how to set up WebSockets with Node.js and ws, we will build
a demo app that shares users’ cursor positions in realtime. We walk through building it
below.

Building an interactive cursor position-sharing demo
with ws
This is a demo to create a colored cursor icon for every connected user. When they move
their mouse around, their cursor icon moves on the screen and is also shown moving
on the screen of every connected user. This happens in realtime, as the mouse is being
moved.

Setting up the WebSocket server
First, require the ws library and use the WebSocket.Server method to create a new
WebSocket server on port 7071 (or any other port of your choosing):

const WebSocket = require('ws');
const wss = new WebSocket.Server({ port: 7071 });

For brevity’s sake, we call it wss in our code. Any resemblance to secure
WebSockets (often referred to as wss) is a coincidence.

Next, create a Map to store a client’s metadata (any data we wish to associate with a
WebSocket client):

const clients = new Map();

32 ws: a Node.js WebSocket library

https://go.ably.com/gto

48 The WebSocket Handbook Chapter 4: Building a Web App with WebSockets

Subscribe to the wss connection event using the wss.on function, which provides a
callback. This will be fired whenever a new WebSocket client connects to the server:

wss.on('connection', (ws) => {
 const id = uuidv4();
 const color = Math.floor(Math.random() * 360);
 const metadata = { id, color };

 clients.set(ws, metadata);

Every time a client connects, we generate a new unique ID, which is used to identify them.
Clients are also assigned a cursor color by using Math.random(); this generates a number
between 0 and 360, which corresponds to the hue value of an HSV color. The ID and
cursor color are then added to an object that we’ll call metadata, and we’re using the Map
to associate them with our ws WebSocket instance.

The Map is a dictionary — we can retrieve this metadata by calling get and providing a
WebSocket instance later on.

Using the newly connected WebSocket instance, we subscribe to that instance’s message
event, and provide a callback function that will be triggered whenever this specific client
sends a message to the server.

ws.on('message', (messageAsString) => {

This event is on the WebSocket instance (ws) itself, and not on the WebSocket.
Server instance (wss).

Whenever our server receives a message, we use JSON.parse to get the message contents,
and load our client metadata for this socket from our Map using clients.get(ws).

We’re going to add our two metadata properties to the message as sender and color:

const message = JSON.parse(messageAsString);
const metadata = clients.get(ws);

message.sender = metadata.id;
message.color = metadata.color;

49 The WebSocket Handbook Chapter 4: Building a Web App with WebSockets

Then we stringify our message again, and send it out to every connected client:

 const outbound = JSON.stringify(message);

 [...clients.keys()].forEach((client) => {
 client.send(outbound);
 });
});

Finally, when a client closes its connection, we remove its metadata from our Map:

 ws.on("close", () => {
 clients.delete(ws);
 });
});

At the bottom we have a function to generate a unique ID:

function uuidv4() {
 return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c)
{
 var r = Math.random() * 16 | 0, v = c == 'x' ? r : (r & 0x3 | 0x8);
 return v.toString(16);
 });
}
console.log('wss up');

This server implementation multicasts, sending any message it has received to all
connected clients.

We now need to write some client-side code to connect to the WebSocket server, and
transmit the user’s cursor position as it moves.

WebSockets on the client-side
We’re going to start with some standard HTML5 boilerplate:

<!DOCTYPE html>
<html lang='en'>
<head>
 <meta charset='UTF-8'>
 <meta http-equiv='X-UA-Compatible' content='IE=edge'>
 <meta name='viewport' content='width=device-width, initial-scale=1.0'>
 <title>Document</title>

50 The WebSocket Handbook Chapter 4: Building a Web App with WebSockets

Next, we add a reference to a style sheet, and an index.js file that we’re adding as an ES
Module (using type=”module”).

 <link rel='stylesheet' href='style.css'>
 <script src='index.js' type='module'></script>
</head>

The body contains a single HTML template which contains an SVG image of a pointer.
We’re going to use JavaScript to clone this template whenever a new user connects to our
server.

<body id='box'>
 <template id='cursor'>
 <svg viewBox='0 0 16.3 24.7' class='cursor'>
 <path stroke='#000' stroke-linecap='round' stroke-
linejoin='round'
 stroke-miterlimit='10' d='M15.6 15.6L.6.6v20.5l4.6-4.5 3.2 7.5
 3.4-1.3-3-7.2z' />
 </svg>
 </template>
</body>
</html>

Next, we need to use JavaScript to connect to the WebSocket server:

(async function() {
 const ws = await connectToServer();
 ...

We call the connectToServer() function, which resolves a promise containing the
connected WebSocket (the function definition will be written later.)

Once connected, we add a handler for onmousemove to the document.body. The
messageBody is very simple: it consists of the current clientX and clientY properties from
the mouse movement event (the horizontal and vertical coordinates of the cursor within
the application’s viewport).

We stringify this object, and send it via our now connected ws WebSocket instance as
the message text:

document.body.onmousemove = (evt) => {
 const messageBody = { x: evt.clientX, y: evt.clientY };
 ws.send(JSON.stringify(messageBody));
 };

51 The WebSocket Handbook Chapter 4: Building a Web App with WebSockets

Now we need to add another handler, this time for an onmessage event to the WebSocket
instance ws. Remember that every time the WebSocket server receives a message, it’ll
forward it to all connected clients.

You might notice that the syntax here differs slightly from the server-side WebSocket code.
That’s because we’re using the browser’s native WebSocket class, rather than the ws library.

ws.onmessage = (webSocketMessage) => {
 const messageBody = JSON.parse(webSocketMessage.data);
 const cursor = getOrCreateCursorFor(messageBody);
 cursor.style.transform = `translate(${messageBody.x}px,
 ${messageBody.y}px)`;
 };

When we receive a message over the WebSocket, we parse the data property of the
message, which contains the stringified data that the onmousemove handler sent to the
WebSocket server, along with the additional sender and color properties that the server-
side code adds to the message.

Using the parsed messageBody, we call getOrCreateCursorFor. This function returns an
HTML element that is part of the DOM. We’ll look at how it works later.

We then use the x and y values from the messageBody to adjust the cursor position using a
CSS transform.

Our code relies on two utility functions. The first is connectToServer, which opens a
connection to our WebSocket server, and then returns a Promise that resolves when the
WebSocket readyState property is 1 - CONNECTED.

This means that we can just await this function, and we’ll know that we have a connected
and working WebSocket connection.

async function connectToServer() {
 const ws = new WebSocket('ws://localhost:7071/ws');
 return new Promise((resolve, reject) => {
 const timer = setInterval(() => {
 if (ws.readyState === 1) {
 clearInterval(timer)
 resolve(ws);
 }
 }, 10);
 });
 }

52 The WebSocket Handbook Chapter 4: Building a Web App with WebSockets

We also use our getOrCreateCursorFor function. This function first attempts to find any
existing element with the HTML data attribute data-sender where the value is the same
as the sender property in our message. If it finds one, we know that we’ve already created
a cursor for this user, and we just need to return it so the calling code can adjust its
position.

function getOrCreateCursorFor(messageBody) {
 const sender = messageBody.sender;
 const existing = document.querySelector(`[data-sender='${sender}']`);
 if (existing) {
 return existing;
 }

If we can’t find an existing element, we clone our HTML template, add the data attribute
with the current sender ID to it, and append it to the document.body before returning it:

 const template = document.getElementById('cursor');
 const cursor = template.content.firstElementChild.cloneNode(true);
 const svgPath = cursor.getElementsByTagName('path')[0];

 cursor.setAttribute('data-sender', sender);
 svgPath.setAttribute('fill', `hsl(${messageBody.color}, 50%, 50%)`);
 document.body.appendChild(cursor);

 return cursor;
 }

}) ();

Now when you run the web application, each user viewing the page will have a cursor
that appears on everyone’s screens because we are sending the data to all the clients
using WebSockets.

Running the demo
If you’ve been following along with the tutorial, then you can run:

> npm install
> npm run start

If not, you can clone a working version of the demo from: https://github.com/ably-labs/
websockets-cursor-sharing.

https://go.ably.com/x1c
https://go.ably.com/x1c

53 The WebSocket Handbook Chapter 4: Building a Web App with WebSockets

> git clone https://github.com/ably-labs/WebSockets-cursor-sharing.git
> npm install
> npm run start

This demo includes two applications: a web app that we serve through Snowpack33, and a
Node.js web server. The NPM start task spins up both the API and the web server.

The demo should look as depicted below:

Figure 4.1: Realtime cursor movement powered by the ws WebSockets library

33 Snowpack

Click to play
(opens in a browser)

https://go.ably.com/7n5
https://go.ably.com/4tm
https://go.ably.com/7n5

54 The WebSocket Handbook Chapter 4: Building a Web App with WebSockets

However, if you are running the demo in a browser that does not support WebSockets
(e.g., IE9 or below), or if you are restricted by particularly tight corporate proxies, you will
get an error saying that the browser can’t establish a connection:

Figure 4.2: Error message returned by the browser when a WebSocket connection can’t be established

This is because the ws library offers no fallback transfer protocols if WebSockets are
unavailable. If this is a requirement for your project, or you want to have a higher level of
reliability of delivery for your messages, then you will need a library that offers multiple
transfer protocols, such as SockJS.

55 The WebSocket Handbook Chapter 4: Building a Web App with WebSockets

SockJS — a JavaScript library
to provide WebSocket-like
communication
SockJS is a library that mimics the native WebSocket API in browsers. Additionally, it will fall
back to HTTP whenever a WebSocket fails to connect, or if the browser being used doesn’t
support WebSockets. Like ws, SockJS requires a server counterpart; its maintainers provide
both a JavaScript client library34, and a Node.js server library35.

Using SockJS in the client is similar to the native WebSocket API, with a few small
differences. We can swap out ws in the demo built previously and use SockJS instead to
include fallback support.

Updating the interactive cursor position sharing
demo to use SockJS
To use SockJS in the client, we first need to load the SockJS JavaScript library from their
CDN. In the head of the index.html document we built earlier, add the following line
above the script include of index.js:

<script src='https://cdn.jsdelivr.net/npm/sockjs-client@1/dist/sockjs.min.
js' defer></script>

Note the defer keyword — it ensures that the SockJS library is loaded before index.js
runs.

In the app/script.js file, we then update the JavaScript to use SockJS. Instead of the
WebSocket object, we’ll now use a SockJS object. Inside the connectToServer function, we’ll
establish the connection with the SockJS server:

const ws = new SockJS('http://localhost:7071/ws');

SockJS requires a prefix path on the server URL. The rest of the app/script.js
file requires no change.

34 SockJS-client
35 SockJS-node

https://go.ably.com/da5
https://go.ably.com/82d

56 The WebSocket Handbook Chapter 4: Building a Web App with WebSockets

Next, we have to update the API/script.js file to make our server use SockJS. This means
changing the names of a few event hooks, but the API is very similar to ws.

First, we need to install sockjs-node. In your terminal run:

> npm install sockjs

Then we need to require the sockjs module and the built-in HTTP module from Node.
Delete the line that requires ws and replace it with the following:

const http = require('http');
const sockjs = require('sockjs');

We then change the declaration of wss to become:

const wss = sockjs.createServer();

At the very bottom of the API/index.js file we’ll create the HTTPS server and add the
SockJS HTTP handlers:

const server = http.createServer();
wss.installHandlers(server, {prefix: '/ws'});
server.listen(7071, '0.0.0.0');

We map the handlers to a prefix supplied in a configuration object ('/ws'). We tell the
HTTP server to listen on port 7071 (arbitrarily chosen) on all the network interfaces on the
machine.

The final job is to update the event names to work with SockJS:

ws.on('message', will become ws.on('data',
client.send(outbound); will become client.write(outbound);

And that’s it, the demo will now run with WebSockets where they are supported; and
where they aren’t, it will use Comet long polling. This latter fallback option will show a
slightly less smooth cursor movement, but it is more functional than no connection at all!

57 The WebSocket Handbook Chapter 4: Building a Web App with WebSockets

Running the demo with SockJS
If you’ve been following along with the tutorial, then you can run:

> npm install
> npm run start

If not, you can clone a working version of the demo from: https://github.com/ably-labs/
websockets-cursor-sharing/tree/sockjs.

> git clone - b sockjs https://github.com/ably-labs/WebSockets-cursor-
sharing.git
> npm install
> npm run start

This demo includes two applications: a web app that we serve through Snowpack36, and a
Node.js web server. The NPM start task spins up both the API and the web server.

The demo should look as depicted below:

Figure 4.3: Realtime cursor movement powered by the SockJS WebSockets library

36 Snowpack

Click to play
(opens in a browser)

https://go.ably.com/m1i
https://go.ably.com/m1i
https://go.ably.com/lkj
https://go.ably.com/4tm
https://go.ably.com/lkj

58 The WebSocket Handbook Chapter 4: Building a Web App with WebSockets

Scaling the web app
You might notice that in both examples we’re storing the state in the Node.js WebSocket
server — there is a Map that keeps track of connected WebSockets and their associated
metadata. This means that for the solution to work, and for every user to see one another,
they have to be connected to the same WebSocket server.

The number of active users you can support is thus directly related to how much hardware
your server has. Node.js is pretty good at managing concurrency, but once you reach a
few hundred to a few thousand users, you're going to need to scale your hardware to
keep all the users in sync.

Scaling vertically is often an expensive proposition, and you'll always be faced with
a performance ceiling of the most powerful piece of hardware you can procure.
Additionally, vertical scaling is not elastic, so you have to do it ahead of time. You should
consider horizontal scaling, which is better in the long run — but also significantly more
difficult. See The scalability of your server layer section in the next chapter for details.

What makes WebSockets hard to scale?
WebSockets are fundamentally hard to scale because connections to your WebSocket
server need to be persistent. And even once you've scaled your server layer, you also need
to provide a solution for sharing data between the nodes. Connection state needs to be
stored out-of-process — this usually involves using something like Redis37, or a traditional
database, to ensure that all the nodes have the same view of state.

In addition to having to share state using additional technology, broadcasting to all
subscribed clients becomes difficult, because any given WebSocketServer node knows only
about the clients connected to itself.

There are multiple ways to solve this: either by using some form of direct connection
between the cluster nodes that are handling the traffic, or by using an external pub/sub
mechanism. This is sometimes called "adding a backplane" to your infrastructure, and is
yet another moving part that makes scaling WebSockets difficult.

See Chapter 5: WebSockets at Scale for a more in-depth read about the engineering
challenges involved in scaling WebSockets.

37 Redis
38 Everything You Need To Know About Publish/Subscribe

https://go.ably.com/lzz
https://go.ably.com/m5t

59 The WebSocket Handbook Chapter 5: WebSockets at Scale

CHAPTER 5

WebSockets at Scale
This chapter covers the main aspects to consider when
you set out to build a system at scale. By this, I mean
a system to handle thousands or even millions of
concurrent end-user devices as they connect, consume,
and send messages over WebSockets. As you will see,
scaling WebSockets is non-trivial, and involves numerous
engineering decisions and technical trade-offs.

The scalability of your server layer
There are two main paths you can take to scale your server layer:

• Vertical scaling. Also known as scaling up, it adds more power (e.g., CPU, RAM) to an
existing machine.

• Horizontal scaling. Also known as scaling out, it involves adding more machines to
the network, which share the processing workload.

Figure 5.1: Vertical and horizontal scaling

60 The WebSocket Handbook Chapter 5: WebSockets at Scale

At first glance, vertical scaling seems attractive, as it's easier to implement and maintain
than horizontal scaling. You might even ask yourself: how many WebSocket connections
can one server handle? However, that's rarely the right question to ask, and that's
because scaling up has some serious practical limitations.

Let's look at a hypothetical example to demonstrate these drawbacks. Imagine you've
developed an interactive virtual events platform with WebSockets that's being used by
tens of thousands of users, with more and more joining every day. This translates into an
ever-growing number of WebSocket connections your server layer needs to handle.

However, since you are only using one machine, there's a finite amount of resources
you can add to it, which means you can only scale your server up to a finite capacity.
Furthermore, what happens if, at some point, the number of concurrent WebSocket
connections proves to be too much to handle for just one machine? Or what happens if
you need to upgrade your server? With vertical scaling, you have a single point of failure,
which would severely affect the availability of your system and the uptime of your virtual
events platform.

In contrast, horizontal scaling is a more available model in the long run. Even if
a server crashes or needs to be upgraded, you are in a much better position to
protect your system’s overall availability since the workload of the machine that
failed is distributed to the other nodes in the network.

Of course, horizontal scaling comes with its own complications — it involves a more
complex architecture, additional infrastructure to manage, load balancing, and
automatically syncing message data and connection state across multiple WebSocket
servers in milliseconds (more about these topics is covered later in this chapter).

Despite its increased complexity, horizontal scaling is worth pursuing, as it allows you
to scale limitlessly (in theory). This makes it a superior alternative to vertical scaling. So,
instead of asking how many connections can a server handle, a better question would be:
how many servers can I distribute the workload to?

In addition to horizontal scaling, you should also consider the elasticity of your
server layer. System-breaking complications can arise when you expose an
inelastic server layer to the public internet, a volatile and unpredictable source
of traffic. To successfully handle WebSockets at scale, you need to be able to
dynamically (automatically) add more servers into the mix so that your system
can quickly adjust and deal with potential usage spikes at all times.

61 The WebSocket Handbook Chapter 5: WebSockets at Scale

Load balancing
Load balancing is the process of distributing incoming network traffic (WebSocket
connections in our case) across a group of backend servers (usually called a server farm).
When you scale horizontally, your load balancing strategy is fundamental.

A load balancer — which can be a physical device, a virtualized instance running on
specialized hardware, or a software process — acts as a “traffic cop”. Sitting between
clients and your backend server farm, the load balancer receives and then routes
incoming connections to available servers capable of handling them.

Figure 5.2: Load balancing

Load balancers detect the health of backend resources and do not send traffic to servers
that cannot deal with additional load. If a server goes down, the load balancer redirects
its traffic to the remaining operational servers. When a new server is added to the farm,
the load balancer automatically starts distributing traffic to it.

The goal of an effective load balancing strategy is to:

• Provide fault tolerance, high availability, and reliability.

• Ensure no one server is overworked, which can degrade performance.

• Minimize server response time and maximize throughput.

• Allow you to flexibly add or remove servers, as demand dictates.

You can perform load balancing at different layers of the Open Systems Interconnection
(OSI) Model39:

• Layer 4 (L4). Transport-level load balancing. This means load balancers can make
routing decisions based on the TCP or UDP ports that packets use, along with their
source and destination IP addresses. The contents of the packets themselves are not
inspected.

39 OSI model, Wikipedia

https://go.ably.com/6cj

62 The WebSocket Handbook Chapter 5: WebSockets at Scale

• Layer 7 (L7). Application-level load balancing. At this layer, load balancers can
evaluate a broader range of data than at L4, including HTTP headers and SSL
session IDs. L7 load balancing is generally more sophisticated and more resource-
intensive, but it can also be more efficient by allowing the load balancer to make
routing decisions based on the content of the message.

Both L4 and L7 load balancing are commonly used in modern architectures.
Layer 4 load balancing is ideal for simple packet-level load balancing, and
it’s usually faster and more secure (because message data isn’t inspected). In
comparison, Layer 7 load balancing is more expensive, but it’s capable of smart
routing based on URL (something you can’t do with L4 load balancing). Large
distributed systems often use a two-tiered L4/L7 load balancing architecture for
internet traffic.

Load balancing algorithms

A load balancer will follow an algorithm to determine how to distribute requests across
your server farm. There are various options to consider and choose from. The table below
presents some of the most commonly used ones:

ALGORITHM ABOUT

Round robin Involves routing connections to available servers sequentially, on a cyclical

basis. For a simplified example, let’s assume we have two servers, A and B. The

first connection goes to server A, the second one goes to server B, the third

one goes to server A, the fourth one goes to B, and so on.

Least connections A new connection is routed to the server with the least number of active

connections.

Least bandwidth A new connection is routed to the server currently serving the least amount of

traffic as measured in megabits per second (Mbps).

Least response time A new connection is routed to the machine that takes the least amount of

time to respond to a health monitoring request (the response speed is used to

indicate how loaded a server is). Some load balancers might also factor in the

number of active connections on each server.

Hashing methods The routing decision is made based on a hash of various bits of data from

the incoming connection. This may include information such as port number,

domain name, and IP address.

Random with two

choices

The load balancer randomly picks two servers from your farm and routes a

new connection to the machine with the fewest active connections.

63 The WebSocket Handbook Chapter 5: WebSockets at Scale

ALGORITHM ABOUT

Custom load The load balancer queries the load on individual servers using something

like the Simple Network Management Protocol (SNMP)40, and assigns a new

connection to the machine with the best load metrics. You can define various

metrics to look at, such as CPU usage, memory, and response time.

Table 5.1: Load balancing algorithms

You should select a load balancing algorithm depending on the specifics
of your WebSocket use case. In scenarios where you have the exact same
number of messages being sent to all clients (for example, live score updates
for all those following a tennis match), and your servers have roughly identical
computing capabilities and storage capacity, you can use the round robin
approach, which is easier to implement compared to some other alternatives.

However, if, for example, you are developing a chat solution, some WebSocket
connections will be more resource-intensive, due to certain end-users being
chattier. In this case, a round robin strategy might not be the best way to
go, since you would in effect be distributing load unevenly across your server
farm. In such a context, you would be better off using an algorithm like least
bandwidth.

Here are other aspects to bear in mind when you’re load balancing WebSockets:

Falling back to alternative transports
You might come across scenarios where you won’t be able to use WebSockets (for
example, some corporate firewalls and networks block WebSocket connections). When
this happens, your system needs to be able to fall back to another transport — usually an
HTTP-based technique, like Comet long polling. This means that your server layer needs to
“understand” both WebSockets, as well as all the fallbacks you are using.

Your server layer must be prepared to quickly adjust to falling back to a less efficient
transport, which usually means increased load. You should bear in mind that your ideal
load balancing strategy for WebSockets might not always be the right one for HTTP
requests; after all, stateful WebSockets and stateless HTTP are fundamentally different.
When you design your system, you must ensure it’s able to successfully load balance
WebSockets, as well as any HTTP fallbacks you support (you might want to have different

40 Simple Network Management Protocol, Wikipedia

https://go.ably.com/078

64 The WebSocket Handbook Chapter 5: WebSockets at Scale

server farms to handle WebSocket vs. non-WebSocket traffic).

Sticky sessions
One could argue that WebSockets are sticky by default (in the sense that there’s a
persistent connection between server and client). However, this doesn’t mean that you
are forced to use sticky load balancing (where the load balancer repeatedly routes traffic
from a client to the same destination server). In fact, sticky load balancing is a rather
fragile approach (there’s always the risk that a server will fail), making it hard to rebalance
load. Rather than using sticky load balancing, which inherently assumes that a client will
always stay connected to the same server, it’s more reliable to use non-sticky sessions, and
have a mechanism that allows your servers to share connection state between them. This
way, stream continuity can be ensured without the need for a WebSocket connection to
always be linked to the exact same server.

Architecting your system for scale
When you build apps with WebSockets for end-users connecting over the public internet,
you often won't be able to predict the number of concurrently-connected devices.
You should design your system in such a way that it’s able to handle an unknown (but
potentially very high) and volatile number of simultaneous users.

To handle unpredictability, you should architect your system based on a pattern
designed for huge scalability. One of the most popular and dependable
choices is the pub/sub pattern41.

In a nutshell, pub/sub provides a framework for message exchange between publishers
(typically your server) and subscribers (often, end-user devices). Publishers and subscribers
are unaware of each other, as they are decoupled by a message broker, which usually
groups messages into channels (or topics). Publishers send messages to channels, while
subscribers receive messages by subscribing to relevant channels.

41 Everything You Need To Know About Publish/Subscribe

https://go.ably.com/m5t

65 The WebSocket Handbook Chapter 5: WebSockets at Scale

Figure 5.3: The pub/sub pattern

The pub/sub pattern's decoupled nature means your apps can theoretically scale to
limitless subscribers. A significant advantage of adopting the pub/sub pattern is that you
often have only one component that has to deal with scaling WebSocket connections —
the message broker. As long as the message broker can scale predictably and reliably,
it's unlikely you'll have to add additional components or make any other changes to
your system to deal with the unpredictable number of concurrent users connecting over
WebSockets.

Here are some other benefits you gain by using pub/sub:

• Smoother scalability. Systems using pub/sub are scalable without the fear of
breaking functionality because communication logic and business logic are separate
entities. Software architects can redesign the message broker’s channel architecture
without the worry of breaking the business logic.

• Elasticity. There’s no need to pre-define a set number of publishers or subscribers.
They can be added to a required channel depending on the usage.

• Ease of development & fast integration. Pub/sub is agnostic to programming
language and communication protocol, which enables disparate components of a
system to be integrated faster compared to legacy alternatives.

There are numerous projects built with WebSockets and pub/sub42, and plenty of open-
source libraries and commercial solutions combining these two elements, so it’s unlikely
you’ll have to build your own WebSockets + pub/sub capability from scratch. Examples of
open-source solutions you can use include: Socket.IO with the Redis pub/sub adapter43,
SocketCluster44, or Django Channels45. Of course, when choosing an open-source solution,
you have to deploy it, manage it, and scale it yourself — this is, without a doubt, a tough
engineering challenge.

42 Websocket Pubsub open source projects on GitHub
43 Redis adapter for Socket.IO
44 SocketCluster
45 Django Channels

https://go.ably.com/eer
http://rb.gy/hxn0u9
https://go.ably.com/2id
https://go.ably.com/cqa

66 The WebSocket Handbook Chapter 5: WebSockets at Scale

Fallback transports
Despite benefiting from widespread platform support, WebSockets suffer from some
networking issues. Here are some of the problems you may come across:

• Some proxies don't support the WebSocket protocol or terminate persistent
connections.

• Some corporate firewalls, VPNs, and networks block specific ports, such as 443 (the
standard web access port that supports secure WebSocket connections).

• WebSockets are still not entirely supported across all browsers.

Imagine you’ve developed a CRM, marketing, and sales platform for tens of thousands
of business users, where you have realtime features such as chat and live dashboards
that are powered by WebSockets. But some users might be connecting from restrictive
corporate networks that block or break WebSocket connections. So what do you do to
ensure your product is available to your customers, knowing that you may not be able to
use WebSockets in all situations?

If you foresee clients connecting from within corporate firewalls or otherwise
tricky sources, you need to consider supporting fallback transports.

Most WebSocket solutions have fallback support baked in. For example, Socket.IO46,
one of the most popular open-source WebSocket libraries out there, will opaquely try to
establish a WebSocket connection if possible, and will fall back to HTTP long polling if not.

Another example is SockJS47, which supports a large number of streaming and
polling fallbacks, including xhr-polling (long-polling using cross-domain XHR48) and
eventsource (Server-Sent Events49).

See Chapter 4: Building a Web App with WebSockets for details on building
a realtime app with SockJS that falls back to Comet long polling when
WebSockets can’t be used.

46 Socket.IO
47 SockJS-client
48 XMLHttpRequest Living Standard
49 Server-Sent Events (SSE): A Conceptual Deep Dive

https://go.ably.com/isx
https://go.ably.com/da5
https://go.ably.com/kva
https://go.ably.com/irg

67 The WebSocket Handbook Chapter 5: WebSockets at Scale

Going beyond open-source solutions, most commercial WebSocket solution providers also
support fallback transports. Of course, there is also the option of developing your own
fallback capability, but this is a complex and time-consuming endeavor. In most cases, to
keep engineering complexity to a minimum, you're better off using an existing WebSocket-
based solution that includes fallback options.

In the context of scale, it's essential to consider the impact that fallbacks may
have on the availability of your system.

Let's assume you have thousands or even tens of thousands of simultaneous users
connected to your system, and there's an incident that causes a significant proportion
of the WebSocket connections to fall back to long polling. Not only is handling tens of
thousands of concurrent WebSocket connections a challenge in itself, but it's further
amplified by falling back to long polling, which is significantly more demanding on your
server layer. For example, while WebSockets allow you to push data as soon as it becomes
available over persistent connections, with long polling you have to buffer the data and
hold it somewhere until the next request comes in; this is much more resource-intensive
(increased RAM usage).

When you have tens of thousands of WebSocket connections simultaneously
falling back to long polling (or any other similar transport), your scalability
problem can increase by a further order of magnitude. To ensure your system's
availability and uptime, your server layer needs to be elastic and have enough
capacity to deal with the increased load. You might also want to consider using
an exponential backoff mechanism (see Automatic reconnections for details).

68 The WebSocket Handbook Chapter 5: WebSockets at Scale

Managing WebSocket connections
and messages
We will now look at the main things you need to consider when managing WebSocket
traffic (connections and messages).

New connections
There’s a moderate overhead in establishing a new WebSocket connection — the process
involves a non-trivial request/response pair between the client and the server known as
the opening handshake.

Now, imagine you’re streaming live sports updates, and there’s a widely popular event
taking place, like a World Cup game, or a Grand Slam final. You can have tens of
thousands or even millions of client devices trying to open WebSocket connections at
the same time. Such a scenario leads to a huge burst in traffic, and your system needs
to be prepared to handle it. The situation would be even more complicated if all these
WebSocket connections were to simultaneously fall back to a less efficient transport.

Here are some of the things you can do to prepare for cases where you have to deal with
an extremely high number of WebSocket connections opening concurrently:

• Testing and monitoring. Run load and stress testing to evaluate how your system
behaves under peak load, and have comprehensive realtime monitoring and
alerting mechanisms in place, so you have a good understanding of what’s
happening at any given moment, and can act immediately if any issues occur.

• Enforce limits. Based on load and stress testing results, you can enforce hard limits,
such as maximum number of connections, or how many new connections can be
opened in a specific time interval. This way, you have more predictability, and you’re
in a better position to scale your system in a reliable way.

• Ensure your system is highly available and fault tolerant. You need to be able to
quickly (auto)scale your server layer so it can deal with traffic spikes. Additionally,
it’s advisable to operate with some capacity margin, and have backups for various
system components, to ensure redundancy and remove single points of failure.

69 The WebSocket Handbook Chapter 5: WebSockets at Scale

Monitoring WebSockets
The public internet is a volatile and unpredictable source of traffic, so you need a robust
and comprehensive monitoring and alerting stack to give you insight into your system,
and how it’s dealing with WebSocket connections.

We won’t go into details about the solutions you can use to build your WebSockets
monitoring stack — there are plenty of options to choose from, including open-source
tools like Prometheus50 and Grafana51.

Here are some of the metrics that are commonly monitored:

• Number of connections

• Churn rate

• Message count, throughput, and network traffic

• Memory / CPU usage

• Instance count

• Packet loss, duplication, and reordering

• Latency

• Warnings and errors

• Server, datacenter, and region health

It’s best if the metrics you monitor are presented on realtime dashboards, so you always
have up-to-date visibility into what is going on. And, of course, you should have alerts
configured so that when certain metrics go outside of acceptable values, you can be
instantly notified, and quickly react to address potential issues.

Load shedding
When scaling WebSockets, you will inevitably have to deal with traffic congestion and
the risk of your server layer getting overloaded by the number of connections it needs to
handle. If the situation is left unchecked, it can lead to cascading failures and even a total
collapse of your system.

To prevent this from happening, you need to have a load shedding strategy in place.
Load shedding mechanisms generally allow you to detect congestion and fail gracefully
when a server approaches overload, by rejecting some or all of the incoming traffic.

50 Prometheus
51 Grafana

https://go.ably.com/2kn
https://go.ably.com/cvt

70 The WebSocket Handbook Chapter 5: WebSockets at Scale

Here are a few things to have in mind when shedding connections:

• You need to run tests to discover the maximum load that your system is generally
able to handle. Anything beyond this threshold should be a candidate for shedding.

• You need a backoff mechanism (see Automatic Reconnections for details) to prevent
rejected clients from attempting to reconnect immediately; this would just put your
system under more pressure.

• You might also consider dropping existing connections to reduce load on your system;
for example, the idle ones (which, even though idle, are still consuming resources due
to heartbeats).

Restoring connections
Many reasons could lead to WebSocket connections being dropped. Users might
switch from a mobile data network to a Wi-Fi network, go through a tunnel, or perhaps
experience intermittent network issues. Or one of your servers might be overloaded and
it crashes, or it needs to shed connections. When scenarios like these occur, WebSocket
connections need to be restored.

Automatic reconnections

You could implement a reconnection script that enables clients to reconnect
automatically. A simple one might look something like this52:

function connect() {
 ws = new WebSocket("ws://localhost:8080");
 ws.addEventListener('close', connect);
 }

However, this approach is not ideal, since reconnection attempts occur immediately after
the WebSocket connections are closed. Clients continuously try to reconnect, even if your
server layer does not have enough capacity to deal with all of the incoming WebSocket
connections. This can put your system under even more pressure, and lead to cascading
failures.

52 Jeroen de Kok, How to implement a random exponential backoff algorithm in Javascript

https://go.ably.com/0uq

71 The WebSocket Handbook Chapter 5: WebSockets at Scale

An improvement would be to use an exponential backoff reconnection algorithm, as
demonstrated in this example:

var initialReconnectDelay = 1000;
var currentReconnectDelay = initialReconnectDelay;
var maxReconnectDelay = 16000;

function connect() {
 ws = new WebSocket("ws://localhost:8080");
 ws.addEventListener('open', onWebsocketOpen);
 ws.addEventListener('close', onWebsocketClose);
}

function onWebsocketOpen() {
 currentReconnectDelay = initialReconnectDelay;
}

function onWebsocketClose() {
 ws = null;
 setTimeout(() => {
 reconnectToWebsocket();
 }, currentReconnectDelay);
}

function reconnectToWebsocket() {
 if(currentReconnectDelay < maxReconnectDelay) {
 currentReconnectDelay*=2;
 }
 connect();
}

 The algorithm exponentially increases the delay after each reconnection attempt,
increasing the waiting time between retries to a maximum backoff time. Compared to
a simple reconnection script, this is better, because it gives you some time to add more
capacity into your system so that it can deal with all the WebSocket reconnections. But it’s
still not great, because all the clients would keep trying to reconnect all at once.

You can make the exponential backoff mechanism more reliable by making it random, so
not all clients reconnect at the exact same time:

function onWebsocketClose() {
 ws = null;
 // Add anything between 0 and 3000 ms to the delay.
 setTimeout(() => {
 reconnectToWebsocket();
 }, currentReconnectDelay + Math.floor(Math.random() * 3000)));
}

72 The WebSocket Handbook Chapter 5: WebSockets at Scale

Reconnections with continuity

For some use cases, data integrity (guaranteed ordering and exactly-once delivery) is
crucial, and once a WebSocket connection is re-established, the stream of data must
resume precisely where it left off. Think, for example, of features like live chat, where
missing messages due to a disconnection or receiving them out of order leads to a poor
user experience and causes confusion and frustration.

If resuming a stream exactly where it left off after brief disconnections is important to your
use case, here are some things you’ll need to consider:

• Caching messages in front-end memory. How many messages do you store, and for
how long?

• Moving data to persistent storage. Do you need to transfer data to persistent
storage? If so, where do you store it, and for how long? How will clients access that
data when they reconnect?

• How does the stream resume? When a client reconnects, how do you know exactly
where to resume the stream from? Do you need to use a serial number / timestamp
to establish where a connection broke off? Who needs to keep track of the connection
breaking down — the client or the server?

• Syncing connection state across your servers. Assuming you are not using sticky load
balancing (you shouldn’t), a client might reconnect to a different server than the
initial one, so you need to ensure any server is able to resume the stream. Should
you use something like a gossip protocol or a publish/subscribe solution to ensure
connection state is shared across your server farm? How will you ensure that the sync
mechanism itself is always available and working reliably?

Heartbeats
The WebSocket protocol natively supports control frames53 known as Ping and Pong.
These control frames are an application-level heartbeat mechanism to detect whether a
WebSocket connection is alive. Usually, the server is the one that sends a Ping frame and,
on receipt, the client-side must send a Pong frame back as a response.

You should closely monitor the effect heartbeats at scale have on your system,
and the ratio of Ping/Pong frames to actual messages being sent over
WebSockets. There are situations when you might find that you are sending
more heartbeats than messages (text or binary frames) over WebSockets.

53 RFC 6455, Section 5.5: Control Frames

http://rb.gy/yb0in2

73 The WebSocket Handbook Chapter 5: WebSockets at Scale

This isn't really impactful in the context of just one connection, but having thousands or
even millions of concurrent WebSocket connections with a high heartbeat rate will add
significant load on your server. If your use case allows, it might make sense to reduce the
frequency of heartbeats to make it easier to scale.

Backpressure
When streaming data to client devices at scale over the internet, backpressure is one of
the key issues you will have to deal with. For example, let’s assume you are streaming 20
messages per second, but a client can only handle 15 messages per second. What do you
do with the remaining 5 messages per second that the client is unable to consume?

You need a way to monitor the buffers building up on the sockets used to stream data
to clients, and ensure a buffer never grows beyond what the downstream connection
can sustain. Beyond client-side issues, if you don’t actively manage buffers, you’re risking
exhausting the resources of your server layer — this can happen very fast when you have
thousands of concurrent WebSocket connections.

A typical backpressure corrective action is to drop packets indiscriminately. This approach
works well when the last message sent from a WebSocket stream is always the most
important one — for example, use cases like live sports updates, where the latest score is
the most relevant piece of information. To reduce bandwidth and latency, in addition to
dropping packets, you should also consider something like message delta compression,
which generally uses a diff algorithm54 to send only the changes from the previous
message to the consumer rather than the entire message.

However, dropping packets is not always a good solution — there are use cases where
data integrity is critical, and you simply can’t afford to lose information. In such scenarios,
you should use application-level acknowledgments (ACKs) as confirmation of message
receipt, and configure your system to hold off from sending additional batches of
messages until it has received ACKs. You also need to consider how to ensure stream
continuity even if disconnections are involved.

54 Tsviatko Yovtchev, Delta Compression: A practical guide to diff algorithms and delta file formats

https://go.ably.com/y48

74 The WebSocket Handbook Chapter 5: WebSockets at Scale

A quick note on fault tolerance
When you’re trying to build scalable, production-ready apps with WebSockets servicing
thousands or even millions of consumers, you inevitably need to think about the fault
tolerance55 of your system.

Fault tolerant designs treat failures as routine. The assumption has to be that component
failures will happen sooner or later. The larger the system, the higher the chances of issues
occurring. What’s important is that, when failures do happen, your system has enough
redundancy to continue operating, with functionality and user experience preserved as
effectively as possible.

Without going into much detail, to make your system fault-tolerant, you need to ensure
it's redundant against server and datacenter failures. If you’re building cloud-based apps,
this first of all implies having the ability to elastically scale your server layer (and operating
with extra capacity on standby), and distributing your infrastructure across multiple
availability zones.

However, it isn’t sufficient to rely on any specific region for multiple reasons56 — sometimes
multiple availability zones in a region do fail at the same time; sometimes there might
be local connectivity issues making the region unreachable; and sometimes there might
simply be capacity limitations in a region that prevent all services from being supportable
there.

As a result, it’s often best to have infrastructure deployed in multiple regions. This is the
ultimate way of ensuring statistical independence of failures and the strongest guarantee
that your system will continue to operate and provide uninterrupted service to your users.

55 Dr. Paddy Byers, Engineering dependability and fault tolerance in a distributed system
56 Michael Gariffo, AWS suffers third outage of the month

https://go.ably.com/wff
https://go.ably.com/7iw

75 The WebSocket Handbook Chapter 5: WebSockets at Scale

WebSockets at scale checklist

Use horizontal scaling rather than vertical scaling. It’s more reliable, especially
for use cases where you can’t afford your system to be unavailable under any
circumstances.

If possible, use smaller machines (servers) rather than large ones. They are easier
and faster to spin up, and costs are more granular.

Aim to have a homogeneous server farm. It’s much more complicated to balance
load efficiently and evenly across machines with different configurations.

Have a good understanding of your use case and relevant parameters (such as
usage patterns and bandwidth) before choosing a load balancing algorithm.

Ensure your server layer is dynamically elastic, so you can quickly scale out when you
have traffic spikes. You should also operate with some capacity margin, and have
backups for various system components, to ensure redundancy and remove single
points of failure.

There is rarely a one-size-fits-all protocol in large-scale systems; different protocols
serve different purposes better than others. You need to think about what other
options your system needs to support in addition to WebSockets, and consider ways
to ensure protocol interoperability.

You most likely need to support fallback transports, such as Comet long polling,
because WebSockets, although widely supported, are blocked by certain enterprise
firewalls and networks. Note that falling back to another protocol changes your
scaling parameters; after all, stateful WebSockets are fundamentally different from
stateless HTTP, so you need a strategy to scale both.

Run load and stress testing to understand how your system behaves under peak
load, and enforce hard limits (for example, maximum number of concurrent
WebSocket connections) to have some predictability.

76 The WebSocket Handbook Chapter 5: WebSockets at Scale

WebSocket connections and traffic over the public internet are unpredictable
and rapidly shifting. You need a robust realtime monitoring and alerting stack, to
enable you to detect and quickly implement remedial measures when issues occur.

You need to have a load shedding strategy; failing gracefully is always better than
a total collapse of your system.

Use a tiered infrastructure to enable you to recover from faults and coordinate
between servers.

Some WebSocket connections will inevitably break at some point. You need a
strategy for ensuring that after the WebSocket connections are restored, you can
resume the stream with ordering and delivery (preferably exactly-once) guaranteed.

Use a random exponential backoff mechanism when handling reconnections. This
allows you to protect your server layer from being overwhelmed, prevents cascading
failures, and gives you time to add more capacity to your system.

Keep track of idle connections and close them. Even if no messages (text or binary
frames) are being sent, you are still sending ping/pong frames periodically, so even
idle connections consume resources.

77 The WebSocket Handbook Resources

Resources
References

• Alex Russell, Comet: Low Latency Data for the Browser

• Berkeley sockets

• Can I use WebSockets?

• Django Channels

• Dr. Paddy Byers, Engineering dependability and fault tolerance in a distributed system

• Everything You Need To Know About Publish/Subscribe

• Grafana

• IANA WebSocket Close Code Number Registry

• IANA WebSocket Extension Name Registry

• IANA WebSocket Opcode Registry

• IANA WebSocket Protocol Registries

• IANA WebSocket Subprotocol Name Registry

• IETF HTTP Working Group, HTTP Documentation, Core Specifications

• IRC logs, 18.06.2018

• Jeroen de Kok, How to implement a random exponential backoff algorithm in Javascript

• Jesse James Garrett, Ajax: A New Approach to Web Applications

• Kayla Matthews, MQTT: A Conceptual Deep-Dive

• Long Polling — Concepts and Considerations

• Matthew O’Riordan, Google — polling like it’s the 90s

• Michael Gariffo, AWS suffers third outage of the month

• OSI model

• Prometheus

• Redis

• Redis adapter for Socket.IO

• RFC 1945: Hypertext Transfer Protocol - HTTP/1.0

• RFC 2068: Hypertext Transfer Protocol - HTTP/1.1

• RFC 6455: The WebSocket Protocol

• RFC 7519: JSON Web Token (JWT)

• RFC 8441: Bootstrapping WebSockets with HTTP/2

• Server-Sent Events (SSE): A Conceptual Deep Dive

• Server-sent events, HTML Living Standard

• Simple Network Management Protocol

• Snowpack

• SocketCluster

• Socket.IO

https://go.ably.com/wjk
https://go.ably.com/glt
https://go.ably.com/0x5
https://go.ably.com/cqa
https://go.ably.com/wff
https://go.ably.com/m5t
https://go.ably.com/cvt
https://go.ably.com/yy4
https://go.ably.com/2ul
https://go.ably.com/jex
https://go.ably.com/6hy
https://go.ably.com/afe
https://go.ably.com/mc2
https://go.ably.com/m92
https://go.ably.com/0uq
https://go.ably.com/7a4
https://go.ably.com/qzf
https://go.ably.com/2bg
https://go.ably.com/zps
https://go.ably.com/7iw
https://go.ably.com/6cj
https://go.ably.com/2kn
https://go.ably.com/lzz
http://rb.gy/hxn0u9
https://go.ably.com/n6l
https://go.ably.com/tqm
https://go.ably.com/5av
https://go.ably.com/par
https://go.ably.com/1em
https://go.ably.com/irg
https://go.ably.com/1om
https://go.ably.com/078
https://go.ably.com/4tm
https://go.ably.com/2id
https://go.ably.com/isx

78 The WebSocket Handbook Resources

• SockJS-client

• SockJS-node

• The IETF HTTP Working Group

• The Original HTTP as defined in 1991

• The Simple Text Oriented Messaging Protocol (STOMP)

• The websocket-extensions framework

• Tsviatko Yovtchev, Delta Compression: A practical guide to diff algorithms and delta file
formats

• W3C mailing lists, TCPConnection feedback

• Websocket Pubsub open source projects on GitHub

• Web sockets, HTML Living Standard

• ws: a Node.js WebSocket library

• XMLHttpRequest Living Standard

Videos

• A Beginner’s Guide to WebSockets

• The Complete Guide to WebSockets

• WebSockets Crash Course - Handshake, Use-cases, Pros & Cons and more

Further reading

• WebSockets Security: Main Attacks and Risks

• WebSocket Security - Cross-Site Hijacking (CSWSH)

• The Future of Web Software Is HTML-over-WebSockets

• Implementing a WebSocket server with Node.js

• Migrating Millions of Concurrent Websockets to Envoy (Slack Engineering)

• The Periodic Table of Realtime

Open-source WebSocket libraries

• Socket.IO

• Nodejs-websocket

• WebSocket-Node

• SockJS-node

• SockJS-client

• ws

• websocket-as-promised

• faye-websocket-node

• Sockette

• rpc-websockets

https://go.ably.com/da5
https://go.ably.com/82d
https://go.ably.com/9fu
https://go.ably.com/wur
https://go.ably.com/g97
https://go.ably.com/363
https://go.ably.com/y48
https://go.ably.com/y48
https://go.ably.com/sg9
https://go.ably.com/eer
https://go.ably.com/0u9
https://go.ably.com/gto
https://go.ably.com/kva
https://go.ably.com/0pq
https://go.ably.com/mjl
https://go.ably.com/7gi
https://go.ably.com/4yy
https://go.ably.com/x04
https://go.ably.com/0h3
https://go.ably.com/18y
https://go.ably.com/5l1
https://go.ably.com/alx
https://go.ably.com/isx
https://go.ably.com/vs3
https://go.ably.com/0u3
https://go.ably.com/82d
https://go.ably.com/da5
https://go.ably.com/gto
https://go.ably.com/df5
https://go.ably.com/76s
https://go.ably.com/ucj
https://go.ably.com/9nq

79 The WebSocket Handbook Final thoughts

Final thoughts
We hope this book has helped you gain a good understanding of how WebSockets
came to be and how they work, and has enabled you to easily build your first realtime
WebSocket-based app. In future versions, we plan to add more demo apps, and cover
additional aspects that are currently out of scope, such as WebSocket security, and
alternatives to WebSockets.

We treasure any feedback from our readers. If you’ve spotted a mistake, if you have any
suggestions for what we should include in future versions of the ebook, or if you simply
want to chat about WebSockets, reach out to us!

Contact us

https://go.ably.com/v42

About Ably
Ably is the platform that powers synchronized digital experiences in realtime for millions of
concurrently connected devices around the world. Whether attending an event in a virtual
venue, receiving realtime financial information, or monitoring live car performance data –
consumers simply expect realtime digital experiences as standard.

Ably provides a suite of APIs to build, extend, and deliver powerful digital experiences
in realtime – primarily over WebSockets – for more than 250 million devices across 80
countries each month. Organizations like Bloomberg, HubSpot, Verizon, and Hopin
depend on Ably’s platform to offload the growing complexity of business-critical realtime
data synchronization at global scale.

Sign up for a free account

https://go.ably.com/2h0
https://go.ably.com/d9f

